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Abstract

In this paper we prove exponential inequalities (also called Bernstein’s inequality) for fractional
martingales. As an immediate corollary, we will discuss weak law of large numbers for fractional
martingales under divergence assumption on the β−variation of the fractional martingale. A non
trivial example of application of this convergence result is proposed.
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1. Introduction

The notion of fractional martingales has been introduced in Hu et al. (2009) where the authors
proved an extension of Lévy’s characterization theorem to the fractional Brownian motion. The
purpose of this short communication is to investigate exponential inequalities of Bernstein’s type
and their applications to laws of large numbers for fractional martingales.

More precisely when we fix α ∈ (− 1
2 ,

1
2 ), if M = (Mt)t≥0 is a continuous local martingale, the

process M (α) = (M (α)
t )t≥0 defined by M (α)

t =
∫ t
0
(t− s)αdMs will be called a fractional martingale

(provided that the above integral exists). For a fixed time t, we can consider the true martingale
(Ztu)0≤u≤t defined by Ztu =

∫ u
0

(t − s)αξsdWs where W = (Wt)t≥0 is a Ft−Brownian motion and
ξ = (ξt)t≥0 is a progressively measurable and square integrable process. Here t is consider as a
fixed parameter for the martingale Zt. As a consequence of the classical exponential inequality,
one can easily obtain some deviation probability bounds. For example if α < 0, it is clear that

P
(
|M (α)

t | ≥ u ,
∫ t
0
|ξτ |2dτ ≤ νt

)
≤ 2 exp

(
− u2

4 t2α νt

)
.

Hence it is easy to prove some exponential inequalities when t is fixed (see also Remark 2).
Our aim is to investigate some deviation bounds for sup0≤s≤t |M

(α)
s |. This will be no more a

straightforward application of the result in the martingale case when α = 0. We recall that for
the martingale M (0), if it vanishes at time t = 0, then

P
(

sup
s≤t
|Ms| ≥ at

)
≤ 2 exp

(
−a

2t

2c

)
, (1)

if c is a constant such that 〈M〉t ≤ ct for all t (see Revuz and Yor , 1999, Exercice 3.16, Chapter
4).

And so our work will concern the extension of exponential inequalities similar to (1) for frac-
tional martingales. Since on any time interval, the process M (α) has finite nonzero variation of
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order β = 2/(1 + 2α) we shall try to use some quantities related to the β−variation in the state-
ment of our Bernstein’s type inequality. This will represent the main result of this paper and it is
the purpose of Theorem 1.

As an application of these exponential inequalities, we will have a discussion around weak
law of large numbers for fractional martingales. We think that using our result on the deviation
probability bounds for fractional martingale is a first step to the study of law of large numbers for
fractional martingales. So in Proposition 2 we establish that sup0≤s≤t |M

(α)
s |/〈M (α)〉β,t tends to 0

in probability provided that the β−variation 〈M (α)〉β,t tends to infinity faster than ta for some a >
0. Of course this is not a classical condition but we present a non trivial application of this weak law
of large numbers in Proposition 3. To end this discussion, a related convergence result is given in
Proposition 4 under the more conventional assumption on the divergence of the quadratic variation
of the underlying martingale. More precisely, we shall prove that

∫ t
0
(t−s)αξsdWs/

∫ t
0
(t−s)2αξ2sds

tends to 0 almost surely when α > 0 and under the assumption that
∫ +∞
0

ξ2sds = +∞ almost-
surely. In a sense, the law of large numbers for the martingale (

∫ t
0
ξsdWs)t≥0 is transferred to its

fractional martingale M (α).
The paper is organized as follows. In the following section we precise our notations and we

state our results. Two proofs will be given in Section 3 and Section 4.

2. Notations and main results

We follow the terminology of Hu et al. (2009). Let (Ω,F ,P) be a complete probability space
equipped with a continuous filtration (Ft)t≥0 such that F0 contains the P−negligeable events. Let
β ≥ 1 and let X = (Xt)t≥1 be a continuous adapted process. The β−variation of X on the time
interval [0,t] is denoted by 〈X〉β,t and is defined as the limit in probability (if it does exist) of

S
[0,t]
β,n :=

n∑
i=1

|Xtni
−Xtni−1

|β

where for i = 0, ..., n, tni = i
n × t. If the convergence holds in L1, we say that the β−variation

exists in L1. A parameter α ∈ (− 1
2 ,

1
2 ) is fixed and we denote

β =
2

1 + 2α
.

We notice that β ∈ (1,+∞) and β > 2 when α < 0. LetM (α) = (M (α)
t )t≥0 a fractional martingale

of order α. This means that M (α) is a continuous Ft−adapted process such that there exists a
continuous local martingale M = (Mt)t≥0 with

∫ t
0
(t− s)2αd〈M〉s <∞ a.s. for all t ≥ 0, and

M
(α)
t =

∫ t

0

(t− s)αdMs . (2)

If α ∈ (0, 12 ), the above integral always exists as a Riemann-Stieltjes integral. In order to ensure
the existence M (α) when α ∈ (− 1

2 ,0), we assume the following hypothesis in all the sequel.

Hypothesis I. The continuous local martingale M is of the form

Mt =
∫ t

0

ξs dWs

where W = (Wt)t≥0 is a Ft−Brownian motion and ξ = (ξt)t≥0 is a progressively measurable
process such that for all t ≥ 0

∫ t

0

E
(
|ξs|β

′
)ds <∞ for some β′ > β, if α < 0;

∫ t

0

E
(
|ξ2s |
)
ds <∞ , if α > 0.
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Under Hypothesis I, the integral appearing in (2) always exists as a Riemann-Stieltjes integral.
This is a consequence of Hu et al. (2009, Lemma 2.2) and the fact that the trajectories of M are
α′−Hölder continuous on finite interval. Moreover, by Theorem 2.6 and Remark 2.7 of Hu et al.
(2009), the β−variation of M (α) exists in L1 and

〈M (α)〉β,t = cα

∫ t

0

|ξs|βds

where cα depends only on α. The explicit form of the constant cα is given in Hu et al. (2009)
but this is not important in our work.

Nevertheless we stress the point that under Hypothesis I, the expression of M (α) is given by

M
(α)
t =

∫ t

0

(t− s)α ξs dWs . (3)

Moreover, using Hölder’s inequality one deduces the following relations between the β−variation
of M (α) and the quadratic variation of the underlying martingale M :

〈M〉t ≤ c−2/β
α t

β−2
β 〈M (α)〉2/ββ,t when α < 0;

〈M (α)〉β,t ≤ cα t
2−β

2 〈M〉β/2t when α > 0.

Our main result which is a generalization of Bernstein’s inequality to fractional martingales is
stated in the next theorem.

Theorem 1. We assume Hypothesis I. We denote Ct = 2 + 21/2t2. For any positive function
t 7→ νt and any L ≥ 1 the following exponential inequalities hold.

(i) When α < 0 we have

P
(

sup
0≤s≤t

|M (α)
s | ≥ Lc1 t

β′−β
2ββ′ ν

1/2
t ,

( ∫ t
0
|ξτ |β

′
dτ
)2/β′ ≤ νt ) ≤ Ct exp

{
−κ

2 L2

t
β′−β
ββ′

}
(4)

with c1 defined in (24) and κ2 = 4π(ββ′/(β′ − β))3.

(ii) When α > 0, for any ε ∈ (0,α) it holds that

P
(

sup
0≤s≤t

|M (α)
s | ≥ L 26 κ tα−ε ν

1/2
t ,

∫ t
0
|ξτ |2dτ ≤ νt

)
≤ Ct exp

{
− κ2 L2

t2(α−ε)

}
(5)

with κ = (π/2)1/2ε−3/2.

(iii) If we assume that the process ξ is bounded by c∞ almost-surely, then for any α ∈ (− 1
2 ,

1
2 )

and any ε ∈ (0, 12 + α)

P
(

sup
0≤s≤t

|M (α)
s | ≥ L 26 κ c∞ t1/2+α−ε

)
≤ Ct exp

{
− κ2 L2

t1+2α−2ε

}
, (6)

with κ = (π/2)1/2ε−3/2.

Formally, the above inequalities are consistent (asymptotically when t grows to infinity) with
the classic ones recalled in (1) when α = 0 (or equivalently β = β′ = 2). For example, one can
put L � t1/2+ε with ε = 1/4 in (5).

Remark. The above result have a straightforward proof if we are interested by exponential in-
equalities without the supremum with respect to s ∈ [0,t]. For example to show that

P
(
|M (α)

t | ≥ u ,
( ∫ t

0
|ξτ |β

′
dτ
)2/β′ ≤ νt ) ≤ 2 exp

(
− u2

4 Cβ,β′ t2(β
′−β)/ββ′ νt

)
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when α < 0, it suffices to remark that, by Hölder’s inequality, (
∫ t
0
|ξτ |β

′
dτ)2/β

′ ≤ νt implies that∫ t

0

(t− s)2αξ2sds ≤ Cβ,β′t2(β−β
′)/ββ′νt.

Thus the inequality is a consequence of the classical exponential inequality when one considers the
martingale (Ztu)0≤u≤t defined by Ztu =

∫ u
0

(t− s)αξsdWs (t is consider as a fixed parameter).

The uniform deviations stated in theorem 1 are a little bit more complicated than the one we
described in the above remark. Their proofs are postponed in Section 3.

As a corollary of the above theorem, we obtain a weak law of large numbers for fractional
martingales.

Proposition 2. Under Hypothesis I, let M (α) be a fractional martingale with α ∈ (− 1
2 ,

1
2 ) having

the expression M (α)
t =

∫ t
0
(t− s)αξsdWs. We assume that the process ξ is bounded (by a constant

c∞). Then we have the following weak law of large numbers: suppose that there exists a > 0 such
that

lim
t→∞

〈M (α)〉β,t
ta

= +∞ almost-surely

then the following convergence holds in probability

sup0≤s≤t |M
(α)
s |

〈M (α)〉β,t
−−−→
t→∞

0 .

Proof. With η > 0 we use (6) to write that

P

(
sup0≤s≤t |M

(α)
s |

〈M (α)〉β,t
≥ η

)
≤ P

(
sup0≤s≤t |M

(α)
s |

〈M (α)〉β,t
≥ η , 〈M (α)〉β,t ≥ ta

)
+ P

(
〈M (α)〉β,t ≤ ta

)
≤ P

(
sup

0≤s≤t
|M (α)

s | ≥ η ta
)

+ P
(
〈M (α)〉β,t ≤ ta

)
≤ Ct exp

(
− η2 t2a

128 c2∞ t2(1+2α−2ε)

)
+ P

(
〈M (α)〉β,t ≤ ta

)
. (7)

It suffices to choose ε closed to 1/2 + α such that a > 1 + 2α − 2ε and the first term in the
right hand side of (7) tends to 0 as t goes to infinity. The second term in (7) tends to 0 because
limt→∞ t−a〈M (α)〉β,t = +∞ almost-surely.

The following proposition provides a non trivial example of application of the above result.
One refers to Nualart (2006) for details about fractional Brownian motion.

Proposition 3. For H ∈ (0,1), let BH = (BHt )t≥0 be a fractional Brownian motion adapted with
respect to the filtration (Ft)t≥0 and let Φ be a bounded continuous function from R to R. With
α ∈ (− 1

2 ,
1
2 ), the fractional martingale N (α) defined by N (α)

t =
∫ t
0
(t − s)αΦ(BHs )dWs satisfies the

weak law of large numbers

sup0≤s≤t |N
(α)
s |

〈N (α)〉β,t
P−−−→

t→∞
0 . (8)

Proof. As regard to (7), one have to find a > 0 such that

P
(
〈N (α)〉β,t ≤ ta

)
−−−→
t→∞

0 .
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For that sake, we will make use of the local time LH(t, y) of BH at y ∈ R defined heuristically for
t ≥ 0 as

LH(t, y) =
∫ t

0

δy(BHs )ds.

It is known (see Berman , 1973/1974; Geman and Horowitz , 1980) that (t, y) 7→ LH(t, y) exists and
is jointly continuous in (t, y). By the self-similarity property of the fractional Brownian motion,
the distributions of LH(t, y) and t1−HLH(1, yt−H) are equal. Using the occupation times formula,
we may write that ∫ t

0

|Φ(BHs )|βds = t

∫ 1

0

|Φ(BHtu)|βdu

d= t

∫ 1

0

|Φ(tHBHu )|βdu (in distribution)

= t

∫
R

|Φ(tHy)|βLH(1, y)dy

= t1−H
∫
R

|Φ(z)|βLH(1, zt−H)dz .

By the bi-continuity of the local time, we finally obtain

1
t1−H

∫ t

0

|Φ(BHs )|βds −−−→
t→∞

(∫
R
|Φ(z)|βdz

)
LH(1, 0)

in distribution. Consequently we have

P
(
〈N (α)〉β,t ≤ ta

)
= P

(
〈N (α)〉β,t
t1−H

≤ ta

t1−H

)
−−−→
t→∞

P
( (∫

R
|Φ(z)|βdz

)
LH(1, 0) ≤ 0

)
= 0

as soon as a < 1 − H. It remains to remark that such a choice of a is always possible and the
convergence (8) is thus a consequence of Proposition 2.

To end this discussion about the law of large numbers for fractional martingales, one has to
mention the following result. It has been used in Saussereau (2011) to investigate asymptotic
properties of a nonparametric estimation of the drift coefficient in fractional diffusion.

Proposition 4. Let ξ = (ξs)s≥0 is one dimensional, adapted process with respect to the filtration
generated by a standard Brownian motion W = (Wt)t≥0, such that for any T > 0,

∫ T
0
ξ2sds <∞.

When α > 0 and
∫ +∞
0

ξ2sds = +∞ almost-surely, we have

lim
t→∞

∫ t
0
(t− s)α ξs dWs∫ t

0
(t− s)2α ξ2s ds

= 0 almost-surely. (9)

we notice that the assumption on the divergence of the quadratic variation of the martingale
(
∫ t
0
ξsdWs)t≥0 is more common. Nevertheless this result is not a straightforward application of

the techniques used in the martingale case when α = 0. The proof of (9) is based on a fractional
version of the Toeplitz lemma and is postponed in Section 4.

3. Proof of Theorem 1

Exponential inequalities for continuous martingales have attracted a lot of attention: see for
example Caballero et al. (1998); Lipster and Spokoiny (2000) and de la Peña (1999). Due to our
fractional framework, the technics used in the aforementioned works are useless. Our methodology
is closed to the one used in the proof of Theorem 2 from Nualart and Rovira (2000) (see also
Rovira and Sanz-Solé (1996); Sowers (1992)). That being said we need the following lemma.
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Lemma 5. Let ε > 0 satisfying α < ε < 1. Then there exists a constant C = Cα,ε such that

|(u+ h)α − uα| ≤ C hε uα−ε , ∀u > 0, h > 0 . (10)

Proof. With h = xu, Inequality (10) is equivalent to

|1− (1 + x)α| ≤ C xε , ∀x > 0 .

According to the cases we need to prove that{
FC(x) := −1 + (1 + x)α − C xε ≤ 0, ∀x > 0 when α > 0 and
GC(x) := 1− (1 + x)α − C xε ≤ 0, ∀x > 0 when α < 0 . (11)

If we choose C such that

C ≥ |α|
ε

sup
x≥0

{
x1−ε

(1 + x)1−α

}
,

then F ′C and G′C are negative and (11) is then true. It is easy to check that we may find a constant
C satisfying the above inequality and that is independent of ε.

Now we prove Theorem 1.

Proof. We follow the arguments developed in Nualart and Rovira (2000). The inequality (4)
will be a consequence of the Chebyshev exponential inequality involving the random variable
sup0≤s≤t |M

(α)
s |. So the first step is to apply the Garsia-Rodemich-Rumsey inequality in order to

have bounds on this random variable. With Ψ(x) = exp(−x2/4) and p a continuous, non-negative
function on (0, t) such that p(0) = 0, Lemma 1.1 in Garsia et al. (1970/1971) reads as follows:
for all 0 ≤ r ≤ s ≤ t we have

|M (α)
s −M (α)

r | ≤ 8
∫ |s−r|

0

Ψ−1

(
4B
y2

)
dp(y) (12)

provided that

B :=
∫ t

0

∫ t

0

Ψ

(
M

(α)
s −M (α)

r

p(|s− r|)

)
dsdr <∞ .

The function p will be chosen later. We notice that the function Ψ−1 is defined for u ≥ Ψ(0) as
Ψ−1(u) = sup{v; Ψ(v) ≤ u}. With ln+ the function defined by ln+(z) = max(ln(z), 0) for z ≥ 0,
the inequality B/y2 ≤ exp(ln+(B/y2)) implies that

Ψ−1

(
B

y2

)
≤ 2

(
ln+

(
B

y2

))1/2

.

Further calculations show that(
ln+

(
B

y2

))1/2

≤ 21/2
{(

ln+(B)
)1/2

+
(
ln+(y−2

)1/2}
.

Since M (α)
0 = 0, we deduce from (12) that

sup
0≤s≤t

|M (α)
s | ≤ 29/2

∫ t

0

{(
ln+(B)

)1/2
+
(
ln+(y−2

)1/2}
dp(y). (13)

In the following we will need an estimate of the expectation of the random variable B. This will
be possible because a martingale with bounded quadratic variations will appear by means of the
increments of M (α). We fix t and for any 0 ≤ r < s < t we write

M (α)
s −M (α)

r =
∫ s

0

gs,r(τ) dWτ

6



with gs,r(τ) = ξτ (s− τ)α1{r<τ≤s} + ξτ ((s− τ)α − (r − τ)α)1{τ≤r}. We first notice that∫ t

0

|gs,r(τ)|2dτ =
∫ s

r

(s− τ)2α|ξτ |2dτ +
∫ r

0

((s− τ)α − (r − τ)α)2|ξτ |2dτ (14)

In order to have some estimates of the quantity
∫ t
0
|gs,r(τ)|2dτ , we treat different cases according

to the sign of α and according to the assumption we made on the process ξ.

Case (i): we assume Hypothesis I and α < 0
With β′ > β from Hypothesis I, we denote p = β′/2 > 1 and q = β′/(β′− 2) its conjugate. Let

ε > 0 to be fixed later. Starting from (14), we use Lemma 5 to write∫ t

0

|gs,r(τ)|2dτ ≤(s− r)2ε
[∫ s

r

(s− τ)2α−2εξ2τdτ +
∫ r

0

(r − τ)2α−2εξ2τdτ

]
(15)

≤(s− r)2ε
[
I1 + I2

]
(16)

with obvious notations. Now we choose ε such that 1 + 2αq − 2εq > 0. We remark that such a
choice is always possible. Indeed

1 + 2αq − 2εq =
2

β(β′ − 2)

[
(β′ − β)− εββ′

]
and then choosing ε of the form ε = a(β′ − β)/ββ′ with a ∈ (0,1), we remark that

0 < 1 + 2αq − 2εq <
2(β′ − β)
β(β′ − 2)

.

We chose a = 1/2, henceforth ε is fixed as

ε =
1
2
β′ − β
ββ′

.

By Hölder’s inequality we obtain

I1 ≤
(∫ s

r

(s− τ)(2α−2ε)qdτ

)1/q (∫ s

r

ξ2pτ dτ

)1/p

≤ Cβ,β′ (s− r)2α−2ε+1/q ‖ξ‖2L2p(0,t) (17)

with

Cβ,β′ =
[
β(β′ − 2)
β′ − β

] β′−2
β

.

Similarly we obtain the following estimation for I2:

I2 ≤ Cβ,β′ r2α−2ε+1/q ‖ξ‖2L2p(0,t) . (18)

Reporting (17) and (18) in (16) yields∫ t

0

|gs,r(τ)|2dτ ≤ 2 Cβ,β′ (s− r)2ε t2α−2ε+1/q ‖ξ‖2L2p(0,t) . (19)

On the event At = {(
∫ t
0
ξ2pτ dτ)1/p ≤ νt} it holds that∫ t

0

|gs,r(τ)|2dτ ≤ 2 Cβ,β′ (s− r)2ε t2α−2ε+1/q νt .

7



Now it is clear that the function p must be defined as

p(y) = (2Cβ,β′)1/2tα−ε+1/2qν
1/2
t yε (20)

and for fixed r < s, we consider the martingale M = (Mu)0≤u≤t defined by

Mu =
∫ u

0

gs,r(τ)
p(s− r)

dWτ . (21)

Its quadratic variation satisfies for any 0 ≤ u ≤ t

〈M〉u ≤
∫ t

0

|gs,r(s)|2

p(s− r)
ds ≤ 1

almost-surely on At. Let W be the Dambis, Dubins-Schwarz Brownian motion associated to the
martingale M such that Mu = W〈M〉u . We have

E

[
Ψ

(
M

(α)
s −M (α)

r

p(|s− r|)

)
1At

]
= E

[
exp

(
M2
t

4

)
1At

]
≤ E

[
exp

(
1
4

sup
0≤r≤1

|Wr|2
)

1At

]
≤ 21/2 .

Consequently E(B1At) ≤ 21/2t2 and

E(exp{1At ln+(B)}) ≤ 1 + E(1At exp{ln+(B)}) ≤ 2 + 21/2t2 := Ct .

We use the inequality∫ t

0

(
ln+(y−2)

)1/2
yε−1dy ≤ 21/2

∫ +∞

0

z1/2e−εzdz =
1
ε

√
π

2ε
:= κ , (22)

in order to rewrite (13) (with p defined in (20)) as

sup
0≤s≤t

|M (α)
s | ≤ 29/2

[(
ln+(B)

)1/2
tε + κ

]
(2Cβ,β′)1/2tα−ε+1/2qν

1/2
t

≤
[(

ln+(B)
)1/2

tε + κ
]
× c1(t) (23)

with c1(t) = 32C1/2
β,β′ t

α−ε+1/2q ν
1/2
t . Now we end the proof with Chebishev’s exponential inequal-

ity. For L ≥ 1 we have

P
(

sup
0≤s≤t

|M (α)
s | ≥ 2Lκc1(t) , At

)
≤ P

({
ln+(B) ≥ 1

t2ε

(
2Lκc1(t)
c1(t)

− κ
)2
}
∩ At

)

≤ E
[

exp
(
1At ln+(B)

) ]
exp

{
−
(
κ (2L− 1)

tε

)2
}

≤ Ct exp
{
−κ

2 L2

t2ε

}
.

We recall that 4ε = 2α+1/q = 2(β′−β)/ββ′ and the expression (4) is a consequence of the above
inequality with the notation

c1 = 211/2 π1/2

(
ββ′

β′ − β

)3/2

×
[
β(β′ − 2)
β′ − β

] β′−2
2β

. (24)
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Case (ii): we assume Hypothesis I and α > 0
By Hypothesis I,

∫ t
0
ξ2τdτ exists almost-surely. Using (14), we replace (15) by∫ t

0

|gs,r(τ)|2dτ ≤(s− r)2α
∫ s

r

ξ2τdτ + (s− r)2ε
∫ r

0

(r − τ)2α−2εξ2τdτ

≤(s− r)2α
∫ s

r

ξ2τdτ + (s− r)2ε r2α−2ε

∫ r

0

ξ2τdτ

≤2(s− r)2ε t2α−2ε

∫ t

0

ξ2τdτ (25)

with 0 < ε < α. The rest of the proof is similar with the following modifications. We use the
martingale M defined by (21) with the new function p defined by p(y) = 21/2tα−εν

1/2
t yε. On

the event {
∫ t
0
ξ2τdτ ≤ νt}, M has also a quadratic variation bounded by 1. The inequality (23) is

replaced by

sup
0≤s≤t

|M (α)
s | ≤

[(
ln+(B)

)1/2
tε + κ

]
× 32 tα−ε ν1/2

t

where κ is defined in (22). The rest of the proof is identical.

Case (iii): we assume that ξ is bounded
When α ∈ (− 1

2 ,0), there exists ε > 0 such that 1 + 2α− 2ε > 0. Then from (15), it is easy to
see that (19) may be replaced by∫ t

0

|gs,r(τ)|2dτ ≤ 2 c2∞ (t− r)2ε t1+2α−2ε. (26)

When α > 0, (25) may also be replaced by (26).
The rest of the proof is similar to the previous case with the help of the function p defined by

p(y) = (2c∞)1/2t1/2+α−εyε.

4. Proof of Proposition 4

The result is based of the following fractional version of the Toeplitz lemma.

Lemma 6. Let α > 0. Let (xt)t≥0 be a continuous real function such that limt→∞ xt = x and let
(γt)t≥0 be a measurable and positive. Then it holds that∫ t

0
(t− s)α−1

(∫ s
0
γrdr

)
xsds∫ t

0
(t− s)α−1

(∫ s
0
γrdr

)
ds
−−−→
t→∞

x,

provided that limt→∞
∫ t
0
γsds = +∞.

Proof. Let ε > 0 and A be such that |xs− x| < ε for s > A. We denote CA = sups≤A |xs− x|. By
Fubini’s theorem ∫ t

0

(t− s)αγsds = α

∫ t

0

(t− s)α−1

(∫ s

0

γrdr

)
ds ,

and we write for t > A∣∣∣∣∣
∫ t
0
(t− s)α−1

(∫ s
0
γrdr

)
xsds∫ t

0
(t− s)α−1

(∫ s
0
γrdr

)
ds
− x

∣∣∣∣∣ ≤
∫ t
0
(t− s)α−1

(∫ s
0
γrdr

)
|xs − x|ds∫ t

0
(t− s)α−1

(∫ s
0
γrdr

)
ds

≤ ε+ CA

∫ A
0

(t− s)α−1
(∫ s

0
γrdr

)
ds∫ t

0
(t− s)α−1

(∫ s
0
γrdr

)
ds

. (27)
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Another application of Fubini’s theorem implies that∫ A
0

(∫ A
r

(t− s)α−1ds
)
γrdr∫ t

0

(∫ t
r
(t− s)α−1ds

)
γrdr

=

∫ A
0
γr [(t− r)α − (t−A)α] dr∫ t

0
(t− r)αγrdr

≤
∫ A
0

(t− r)αγrdr∫ t
0
(t− r)αγrdr

≤
tα
∫ A
0
γrdr∫ t/2

0
(t− r)αγrdr

≤
tα
∫ A
0
γrdr

(t/2)α
∫ t/2
0

γrdr

and the last term tends to 0 as t tends to ∞. We report this convergence in (27) and we obtain
the result.

Now we prove (9).

Proof. By the stochastic Fubini theorem∫ t

0

(t− s)αξsdWs = α

∫ t

0

(t− s)α−1

(∫ s

0

ξrdWr

)
ds

and consequently

∫ t
0
(t− s)αξsdWs∫ t

0
(t− s)2αξ2sds

=

∫ t
0
(t− s)α−1

(∫ s
0
ξ2rdr

) ∫ s
0 ξrdWr∫ s
0 ξ

2
rdr

ds∫ t
0
(t− s)α−1

(∫ s
0
ξ2rdr

)
ds

.

Since it is assumed that
∫∞
0
ξ2sds = +∞ almost-surely,∫ s

0
ξrdWr∫ s

0
ξ2rdr

a.s.−−−→
t→∞

0

and the generalized Toeplitz lemma 6 implies (9).
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