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Abstract

We study a fractional stochastic perturbation of a first-order hyperbolic equation of nonlinear type.
The existence and uniqueness of the solution are investigated via a Lax–Oleı̆nik formula. To construct the
invariant measure we use two main ingredients. The first one is the notion of a generalized characteristic in
the sense of Dafermos. The second one is the fact that the oscillations of the fractional Brownian motion
are arbitrarily small for an infinite number of intervals of arbitrary length.
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we study the following scalar conservation law:

∂t u(t, x, ω) + ∂xΨ

u(t, x, ω)


= ∂x Ḟ(t, x, ω). (1)

In the above equation, x ∈ R, t ≥ t0, u(t, x, ·) is a random variable with values in R and F is
a random force. A deterministic initial datum u(t0, x) = u0(x) is given at a fixed time t0 and
we assume that u0 ∈ L∞(R). As usual, the random force will not be differentiable in the time
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∗ Corresponding author.

E-mail addresses: bruno.saussereau@univ-fcomte.fr (B. Saussereau), lstoica@fmi.unibuc.ro (I.L. Stoica).

0304-4149/$ - see front matter c⃝ 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2012.01.005

http://www.elsevier.com/locate/spa
http://dx.doi.org/10.1016/j.spa.2012.01.005
http://www.elsevier.com/locate/spa
mailto:bruno.saussereau@univ-fcomte.fr
mailto:lstoica@fmi.unibuc.ro
http://dx.doi.org/10.1016/j.spa.2012.01.005


B. Saussereau, I.L. Stoica / Stochastic Processes and their Applications 122 (2012) 1456–1486 1457

variable; hence Ḟ denotes its formal time derivative. The sense given to the above equation will
be stated below using a weak formulation.

When the random force F is null, Eq. (1) is a deterministic scalar conservation law and there is
a wide literature on this subject. We recall that the weak solution to such a deterministic problem
is not unique in general. One needs to introduce the notion of an entropy solution in order to
identify the physical solution. Furthermore the selected solution has a nice qualitative behavior:
discontinuities that are related to the creation of shocks, and a description of the behavior in terms
of characteristics (see [1]). The books in the non-exhaustive list [2,5,10,16] provide didactic
introductions to this subject.

Stochastic scalar conservation laws constitute a topic that has been of growing interest in
the past few years. Nevertheless, there are only a few works on this subject. In [9] an operator
splitting method is proposed for proving the existence of a weak solution to the Cauchy problem
du + ∂x f (u)dt = g(u)dWt for x ∈ R. In [12] a method of compensated compactness is used
to prove the existence of a stochastic weak entropy solution to the problem du + ∂x f (u)dt =

g(t, x)dWt , x ∈ R. The uniqueness is achieved using a Kruzkhov-type method. A notion of
a strong entropy solution is proposed by [6] in order to extend the above-mentioned result
to the problem du + div f (u)dt = σ(t, u)dWt , x ∈ Rd . A stochastic scalar conservation
law in a bounded domain of Rd is investigated in [19] using a measure-valued solution and
Kruzkhov’s entropy formulation. Finally in [3] it is proved that the Cauchy problem for a
randomly forced, periodic multi-dimensional scalar first-order conservation law with additive
or multiplicative noise admits a unique solution, characterized by a kinetic formulation of
the problem.

Besides these works, the paper of E et al. [20] is the starting point of our investigation. This
article deals with Burgers’ case (that is Ψ(u) = u2/2):

∂t u(t, x, ω) + ∂x

u(t, x, ω)

2
= ∂x Ḟ(t, x, ω),

with a stochastic forcing given by F(t, x, ω) =


∞

k=1 Fk(x)Ḃk(t) where (Bk)k≥1 are
independent standard Wiener processes on the real line R (Ḃk is again the formal time derivative
of this process). The existence and uniqueness are proved, together with the existence of an
invariant measure. A parabolic perturbation problem approach is considered, based on the
Hopf–Cole transformation.

On the one hand, our work is a generalization of the existence and uniqueness results
contained in [20]: we work with a general conservation law depending on the function Ψ and we
can also reach a large noise class having Hölder continuous trajectories. A Lax–Oleı̆nik formula
is given using a direct approach via the Hamilton–Jacobi equation that is naturally associated
with our problem. The existence and uniqueness result is presented in the next section (see
Theorem 1).

On the other hand, we generalize the existence of an invariant measure to the case of a
fractional noise when the sequence of independent Brownian motions is replaced by fractional
Brownian motions (fBm for short) on the real line. There are serious difficulties in working with
fBm. First, unlike the classical Brownian motion, the two-sided fBm is not obtained by gluing
two independent copies of a one-sided fBm together at time t = 0. Moreover, when t ≤ 0, the
two-sided fBm is no longer a Volterra-type process (see [11] for a more detailed discussion of
this fact). In [20], there is roughly speaking only one purely probabilistic property of the noise
that is employed: the Brownian noise is arbitrarily small on an infinite number of arbitrary long
time intervals. In other words for all ε > 0, T > 0, for almost all ω, there exists a sequence of
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random times (tn(ω))n≥1 such that tn(ω) → −∞ and

∀n, sup
tn−T ≤s≤tn


k≥1


∥Fk∥C2

b (R)|Bk(s) − Bk(tn)|


≤ ε.

This result relies on the independence of the increments of a Brownian motion and on the
Borel–Cantelli lemma. In a fractional Brownian framework the increments are no longer
independent. We will be able to adapt this argument thanks to a (reversed) conditional version of
the Borel–Cantelli lemma. The analogous property for the trajectories of a fBm is new as far as
we are aware.

In the following section, we state our hypothesis and we give the main results of our work.
Section 3 is devoted to the variational principle which is used to prove the existence and
uniqueness. As regards the calculus of variations problem considered in Section 3, we study
in Section 4 a particular class of minimizers of the action appearing in the Lax–Oleı̆nik formula:
the one-sided minimizers. They are used to construct a unique solution of (1) defined on the time
interval R in such a way that the random attractor consists of a single trajectory. Then we prove
easily the existence of an invariant solution. Finally, the proof of the oscillation property (see
Theorem 2) of the fractional noise is given in Section 5. Some technical proofs appear in the
Appendix.

2. Notation and the main results

We will use the following notation:

• Cr
b(R) is the space of bounded functions that are differentiable r times with bounded

derivatives endowed with the norm given by ∥ϕ∥Cr
b(R) =

r
i=0 ∥ϕ(i)

∥∞;

• for 0 < λ < 1 and −∞ < a < b < +∞, Cλ(a, b) is the space of λ-Hölder continuous
functions f : [a, b] → R, equipped with the norm ∥ f ∥λ := ∥ f ∥a,b,∞ + ∥ f ∥a,b,λ, where

∥ f ∥a,b,∞ = sup
a≤r≤b

| f (r)| and ∥ f ∥a,b,λ = sup
a≤r≤s≤b

| f (s) − f (r)|

|s − r |λ
;

• for two times t1, t2, H1(t1, t2) is the Sobolev space of L2(t1, t2)-weakly differentiable
functions from [t1, t2] to R equipped with the scalar product

⟨ξ1, ξ2⟩ =

 t2

t1
ξ1(s)ξ2(s)ds +

 t2

t1
ξ̇1(s)ξ̇2(s)ds;

• for a function f from R → R, we denote as f ∗ its Legendre transform defined as f ∗(q) =

supp∈R


pq − f (p)


for q ∈ R.

In the probabilistic framework of (Ω , F , P), we make the following assumption for the stochastic
forcing term F .

Hypothesis I. For any t, x, F(t, x) =


∞

k=1 Fk(x)Bk(t) where:

(a) for any k, Fk belongs to C3
b(R);

(b) there exists λ > 0 such that the sequence of processes

(Bk(t))t∈(−∞,∞)


k≥1 satisfies

Bk(·) ∈ Cλ(a, b) for any k ≥ 1, −∞ < a < b < +∞;
(c) one has to impose additionally that


k≥1 ∥Fk∥C3

b (R)∥Bk∥λ < ∞.
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We remark that the processes Bk are not necessarily independent. It is quite straightforward
to see that the above noise term covers that of [20] but it also covers sequences of processes such
as the fractional Brownian motion of any Hurst parameter.

The function Ψ will satisfy the following assumption.

Hypothesis II. The flux Ψ satisfies:

(a) Ψ is uniformly convex: there exists θ > 0 such that Ψ ′′(v) ≥ θ for all v ∈ R,
(b) the super-linear growth condition: there exist k2 > k1 > 0 and two constants l1, l2 such that

l1|v|
k1 ≤

Ψ (v)
|v|

≤ l2|v|
k2 ,

(c) there exists L such that |Ψ ′(v) − Ψ ′(v′)| ≤ L|v − v′
|,

(d) there exists a positive function R → C(R) such that |Ψ∗(v) − Ψ∗(v′)| ≤ C(R)|v − v′
|

whenever max(|v|, |v′
|) ≤ R.

We stress the fact that our assumptions for Ψ are clearly true if the flux is the square function
as in Burgers’ case.

Now we give the precise meaning of (1).

Definition 1. A random field u defined on [t0, +∞)×R×Ω with real values is a weak solution
of (1) with initial condition u(t0, ·) = u0(·) ∈ L∞(R) if:

(i) For all t > t0 and x ∈ R, u(t, x, ·) is measurable with respect to Ft0,t = σ {Bk(s), t0 ≤ s ≤

t, k ≥ 1}.
(ii) Almost surely, u(·, ·, ω) ∈ L1

loc([t0, ∞) × R) and u(t, ·, ω) ∈ L∞(R) for any t ≥ t0.
(iii) For all test functions ϕ ∈ C2

c (R × R) (the set of functions that are twice differentiable with
compact support) the following equality holds almost surely:

∞

t0


R

∂ϕ(t, x)

∂t
u(t, x)dxdt +


∞

t0


R

∂ϕ(t, x)

∂x
Ψ

u(t, x)


dxdt

= −


R

u0(x)ϕ(t0, x)dx

−


R

∞
k=1


Fk(x)


∞

t0

∂2ϕ(t, x)

∂t∂x
(Bk(t) − Bk(t0))dt


dx . (2)

The stochastic term appears in the above weak formulation in an unusual way. We will give
some comments concerning this in Section 3.

It is well known that the notion of a weak solution is not sufficient for having uniqueness for
the solution of (1) in the deterministic case. One has to introduce admissible solutions (or entropy
weak solutions).

Definition 2. We say that a random field u which is already a weak solution of Eq. (1) is an
entropy weak solution if there exists C > 0 such that for almost all ω ∈ Ω ,

u(t, x + z, ω) − u(t, x, ω) ≤ C


1 +

1
t − t0


z (3)

for all (t, x) ∈ (t0, ∞) × R and z > 0.

The above entropy condition is the historical “condition E”, so called in [15]. It ensures
the uniqueness of bounded weak solutions. It follows from (3) that for t > t0 the function
x → u(t, x)−C x is nonincreasing, and consequently has left and right hand limits at each point.
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Thus also x → u(t, x) has left and right hand limits at each point, with u(t, x−) ≥ u(t, x+). So
the classical form of the entropy condition holds at any point of discontinuity.

First, we are interested in the existence and uniqueness of the entropy weak solution of (1).
We generalize the existence and uniqueness result of [20] for a general flux and a wide class of
noise in the following theorem.

Theorem 1. We assume Hypotheses I and II. Let u0 ∈ L∞(R). There exists a unique entropy
weak solution to the stochastic scalar conservation law (1) such that u(t0, x) = u0(x). For
t ≥ t0, this solution is given by the following Lax–Oleı̆nik-type formula:

u(t, x, ω) =
∂

∂x


inf

ξ∈H1(t0,t)
ξ(t)=x


At0,t +

 ξ(t0)

0
u0(z)dz


, (4)

with

At0,t (ξ) =

 t

t0


Ψ∗(ξ̇ (s)) −


k≥1


Bk(s) − Bk(t0)


F ′

k(ξ(s))ξ̇ (s)


ds

+


k≥1


Bk(t) − Bk(t0)


Fk(ξ(t)). (5)

The fact that F is random and can be decomposed as a linear combination of Hölder
continuous processes plays no role in the proof of this theorem. Nevertheless, we keep this
formulation for two reasons. The first one is to suit the framework of [20] in which this
decomposition was essential. Indeed they use a regularization of the Brownian noise to prove the
existence and uniqueness. The arguments presented here are quite different. The second reason
will become clear when we deal with invariant measure (we will assume that our noise is a
combination of fractional Brownian motions).

Certainly the most important contribution of our work is the study of the invariant measure
for the stochastic conservation law (1) for the particular case of a fractional noise. There is only
the work of E et al. available dealing with invariant measure stochastic scalar conservation laws
(in the case of Burgers’ equation with a Brownian noise). In order to state the results concerning
the invariant measure, we work with the following particular noise term F .

Hypothesis III. For any t, x, F(t, x) =


∞

k=1 Fk(x)Bk(t) with:

(a) for any k, Fk belongs to C3
b(R) and


k≥1 k2/H

∥Fk∥C3
b (R) < ∞;

(b) the sequence of processes

(Bk(t))t∈R


k≥1 is a sequence of independent fractional Brownian

motions with Hurst parameter H ∈ (0, 1).

We recall that (Bk(t))t∈R being a fBm means that it is a centered Gaussian process satisfying
Bk(0) = 0 and E(|Bk(t) − Bk(s)|2) = |t − s|2H .

The technique that we employed to solve the problem of the existence of an invariant measure
are essentially contained in [20]. Nevertheless, the probabilistic property of the noise that is
employed to construct the invariant measure is the fact that it has periods of arbitrary length
and arbitrary small amplitude oscillation as time goes to −∞. The result, which is interesting in
itself, is new in the case of a fBm:

Theorem 2. For all ε > 0, T > 0, for almost all ω, there exists a sequence of random times
(tn(ω))n≥1 such that tn(ω) → −∞ and
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∀n,

k≥1


∥Fk∥C2

b (R) sup
tn−T ≤s≤r≤tn

|Bk(r) − Bk(s)|


≤ ε. (6)

In the Brownian case, this property is easy to prove thanks to the independence of
the increments and the classical Borel–Cantelli lemma. In the framework of the fBm, the
increments are no longer independent and we will naturally employ a conditional version of
the Borel–Cantelli lemma to prove this path property of the fBm. We will additionally make use
of the Garsia–Rodemich–Rumsey inequality and Talagrand’s small ball estimate (see the proof
given in Section 5).

Despite these difficulties, one can state the following results concerning the invariant measure
for the stochastic scalar conservation law with fractional forcing. Let us introduce the precise
formulation of the result.

We denote as D the Skorohod space consisting of functions from R to R having discontinuities
of the first kind. It is endowed with the metric

d( f, g) =


n≥1

2−n1 ∨ dn( f, g)


where dn is the usual distance of Skorohod on [−n, n]. Hence (D, D) is a measurable space with
D the sigma-algebra of Borel sets on D.

In order to construct an invariant measure, we will construct an invariant solution. To this end
we show that for almost all ω, there exists a solution (t, x) → u♯(t, x, ω) starting from u0 ≡ 0
at t0 = −∞. This solution will be built via minimizers of the action At0,0 when t0 → −∞ (see
Section 4).

More precisely we will prove that there exists u♯ from R × R × Ω to R such that:

(i) almost surely, u♯(t, ·, ω) ∈ L∞(R) for any t ;
(ii) almost surely, u♯(t, ·, ω) ∈ D for any t ;

(iii) given t , the mapping ω → u♯(t, ·, ω) is measurable from (Ω , F ) to (D, D);
(iv) on any finite time interval [t1, t2], for almost all ω, (t, x) → u♯(t, x, ω) is a weak solution

of (1) with initial data u0(x) = u♯(t1, x, ω).

For the canonical space Ω = C0(R, R), the space of continuous functions vanishing at 0, we
denote as θ τ the shift operator on Ω with increment τ defined by θ τ (ω)(·) = ω(· + τ) − ω(τ)

for any ω ∈ Ω . We stress the fact that the expression for the shift is modified compared to that
of [20] because the fBm has stationary but not independent increments. This is the expression for
the shift that leaves the two-sided fractional Brownian Wiener measure invariant. The solution
operator Sτ

ω is defined for v ∈ L∞(R) by Sτ
ω(v), as the solution of (1) at time τ , with initial

condition v at time t0 = 0 when the realization of the noise is ω.
We have the following theorem.

Theorem 3. We assume Hypotheses I and III. On (Ω × D; F ⊗ D), the measure µ defined by

µ(dω, dv) = P(dω)δu♯(0,·,ω)(dv) (7)

is the unique measure that leaves invariant the (skew-product) transformation

Ω × D −→ Ω × D
(ω, v) −→ (θ tω, St

ω(v))

with given projection P on (Ω , F ).

The proof of this result is given at the end of Section 4.
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3. The dynamic programming equation

First we motivate the use of a variational principle, considering the one-dimensional (inviscid)
Burgers equation

∂t u + ∂x


u2

2


=

∂

∂x
G(t, x) t > 0, x ∈ R

for an initial condition u0 having discontinuities of the first kind (i.e. u0 belongs to the Skorohod
space D). It is well known that there exists a unique entropy weak solution u given by

u(t, x) =
∂

∂x

 inf
ξ∈C1(0,t)

ξ(t)=x


A0,t +

 ξ(0)

0
u0(z)dz

 ,

where

A0,t (ξ) =

 t

0


1
2
ξ̇ (s)2

+ G(t, ξ(s))


ds. (8)

For two times t1, t2, we have denoted as C1(t1, t2) the space of continuously differentiable
functions from [t1, t2] to R. This relation between Burgers’ equation and the minimization
problem is known as the Lax–Oleı̆nik formula (see [13,15]) and the Hopf–Lax formula in its
original context of Hamilton–Jacobi equations.

In the above equation we have intuitively assumed that G is a deterministic regular force.
Now the source term in the action Aτ,t is

 t
τ


k≥1 Fk(ξ(s))d Bk(s) where the above integral is

not a stochastic integral but a pathwise integral. Indeed, since the trajectories ω → Bk(t)(ω)

are λ-Hölder continuous and ξ is differentiable,
 t
τ

Fk(ξ(s))d Bk(s) exists as a Riemann–Stieltjes
integral thanks to a result of Young [21]. With g(·) := Fk(ξ(·)) one has t

τ

g(s)d Bk(s) = lim
∆→0

n
i=0

g(ti )(Bk(ti+1) − Bk(ti ))

where the convergence holds uniformly in all finite partitions P∆ := {τ = t0 ≤ t1 ≤ · · · tn+1 =

t} with maxi |ti+1 − ti | < ∆. We define B̄(s) := Bk(s) − B(τ ) and we write
n

i=0

g(ti )(Bk(ti+1) − Bk(ti )) =

n
i=0

g(ti )(B̄(ti+1) − B̄(ti ))

= −

n
i=0

B̄(ti+1)

g(ti+1) − g(ti )


+

n
i=0


B̄(ti )


g(ti+1) − g(ti )


+

B̄(ti+1) − B̄(ti )


g(ti+1)


= −

n
i=0

B̄(ti+1)

g(ti+1) − g(ti )


+ B̄(t)g(t) − B̄(τ )g(τ ).

Consequently t

τ

g(s)d Bk(s) = −

 τ

t


Bk(s) − Bk(τ )


ġ(s)ds +


Bk(t) − Bk(τ )


g(t)
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and we rewrite the stochastic term of the action as t

τ


k≥1

Fk(ξ(s))d Bk(s) = −

 t

τ


k≥1


Bk(s) − Bk(τ )


F ′

k(ξ(s))ξ̇ (s)ds

+


k≥1


Bk(t) − Bk(τ )


Fk(ξ(t)). (9)

If ξ(t) is fixed as x , then the second term in (9) is independent of ξ ; hence as in [20] the action is
redefined as for ξ ∈ C1(τ, t) as

Aτ,t (ξ) =

 t

τ


1
2
ξ̇ (s)2

−


k≥1


Bk(s) − Bk(τ )


F ′

k(ξ(s))ξ̇ (s)


ds

+


k≥1


Bk(t) − Bk(τ )


Fk(ξ(t)).

Since the action is defined pathwise it depends on ω and hence should be denoted as Aω
τ,t . We

will not do this for brevity of notation.
We stress the fact that (9) is a true integration by parts that allows us to rewrite the stochastic

term and not a formal one, as was mentioned in [20].
In order to introduce the optimization problem, one can make a kind of change of variable

in the variational formulation (2) and introduce a Hamilton–Jacobi–Bellman equation (HJB
equation for short). Thus it is well known that these partial differential equations are related
to a variational principle. Let us develop the following non-rigorous arguments. Let ϕ be a test
function in C2

c (R × R); by an integration by parts one rewrites (2) as
∞

t0


R

∂tϕ(t, x)u(t, x)dxdt +


∞

t0


R

∂xϕ(t, x)Ψ

u(t, x)


dxdt

= −


R

u0(x)ϕ(t0, x)dx +


R


∞

t0
∂tϕ(t, x)v(t, x)dtdx (10)

with

v(t, x) =

∞
k=1

F ′

k(x)(Bk(t) − Bk(t0)). (11)

Consequently
∞

t0


R

∂tϕ(t, x)

u(t, x) − v(t, x)


dxdt +


∞

t0


R

∂xϕ(t, x)Ψ

u(t, x)


dxdt

= −


R

u0(x)ϕ(t0, x)dx

and with w = u + v we obtain
∞

t0


R

∂tϕ(t, x)w(t, x)dxdt +


∞

t0


R

∂xϕ(t, x)Ψ

w(t, x) + v(t, x)


dxdt

= −


R

u0(x)ϕ(t0, x)dx .

Hence w is a solution of the stochastic scalar conservation law

∂tw + divxΨ(w + v) = 0
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and if we integrate this equation with respect to the space variable x , we derive the HJB equation

∂t W + Ψ(∂x W + v) = 0,

where W is such that ∂x W = w. This HJB is related to an optimization problem with an action
involving the Legendre transform of p → Ψ(p + v). Thanks to the behavior under translation
of the Legendre transformation, we have


Ψ(· + v)

∗
(q) = Ψ∗(q) − vq and we deduce the

expression of the action proposed in (5).
The above remarks are now made rigorous. First we express the action At0,t as

At0,t (ξ) =

 t

t0
L(s, ξ(s), ξ̇ (s))ds  At0,t (ξ)

+V (t, ξ(t)) with

L(s, x, p) =

Ψ(· + v(s, x))

∗
(p)

= Ψ∗(p) −


k≥1


Bk(s) − Bk(t0)


F ′

k(x) × p and

V (t, x) =


k≥1


Bk(t) − Bk(t0)


Fk(x).

With U0 such that ∂xU0 = u0, we define

W (t, x) = inf
ξ∈H1(t0,t)

ξ(t)=x

 At0,t (ξ) + U0(ξ(t0))

. (12)

We remark that U0(ξ(t0)) =
 ξ(t0)

0 u0(z)dz and

W (t, x) = inf
ξ∈H1(t0,t)

ξ(t)=x


At0,t (ξ)


− V (t, x).

With regard to the classical calculus of variations, the left end point is fixed and the Hamiltonian
is the Legendre transform of p → L(t, x, p). Since we do not know of any precise reference
where these changes are discussed, we briefly prove that there exists a minimizer of the actionAt0,t . We recall a definition:

Definition 3. We say that on the interval [t1, t2], ξ ∈ H1(t1, t2) is a minimizer of the action At1,t2
if for any γ ∈ H1(t1, t2) with γ (t1) = ξ(t1) and γ (t2) = ξ(t2) we have At1,t2(ξ) ≤ At1,t2(γ ).

We prove in the following proposition that the function W solves a Hamilton–Jacobi–Bellman
equation and is semi-concave.

Proposition 4. The function (t, x) → W (t, x) is Lipschitz continuous and satisfies for almost
all t, x the Hamilton–Jacobi–Bellman equation

∂t W (t, x) + Ψ


∂x W (t, x) +


k≥1

F ′

k(x)(Bk(t) − Bk(t0))


= 0. (13)

Moreover, for any t, the function x → W (t, x) is semi-concave: there exists a constant K such
that x → W (t, x) − K (1 −

1
t−t0

)x2 is concave.

This proposition is proved in Appendix A.
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Proof of Theorem 1. Now we prove the existence and uniqueness of the solution of (1).

Existence: Our candidate is u = ∂x W + v with W defined in (12) and v defined by (11). It is
clearly adapted. Hypothesis I implies that v(t, ·) ∈ L∞(R) and the Lipschitz property (34) for
W implies that (ii) in Definition 1 holds true.

We prove the variational formulation. Let ϕ be a test function in C2
c (R × R). We integrate the

HJB equation (13) against ∂xϕ and we integrate by parts in order to obtain

−


∞

t0


R

Ψ

∂x W (t, x) + v(t, x)


∂xϕ(t, x)dxdt

=


∞

t0


R

∂s W (t, x)∂xϕ(t, x)dxdt

= −


R

W0(x)∂xϕ(t0, x)dx +


∞

t0


R

∂x W (t, x)∂tϕ(t, x)dxdt.

We have ∂x W0(x) = ∂x W (t0, x) = u(t0, x) + v(t0, x) = u0(x). By another integration by parts
one obtains (10), which is equivalent to (2).

The entropy condition (3) is a consequence of the semi-concavity of W (see Proposition 4).
Indeed, the concavity of x → W (t, x) − K x2 implies that its derivative is a decreasing function.
Then for any z > 0,

∂x W (t, x + z) − 2K (x + z) ≤ ∂x W (t, x) − 2K x .

Moreover it holds that ∥∂xv(t, .)∥∞ ≤ (t − t0)λ


k≥1 ∥F ′′

k ∥∞∥Bk∥t,t0,λ := C and consequently
x → v(t, x) − 2Cx is a decreasing function and for any z > 0,

v(t, x + z) − 2C(x + z) ≤ v(t, x) − 2Cx .

The above two inequalities imply that u = ∂x W + v satisfies Oleı̆nik’s entropy condition (3).

Uniqueness: Since the random force in Eq. (1) does not depend on u, the uniqueness is given by
classical arguments as in Theorem 3 in [5]. �

4. Action minimizers and generalized characteristics

In order to prove that there exists an invariant measure for the stochastic scalar conservation
law (1), we will construct an invariant solution. For that purpose, we use minimizers of the action
Aτ,t which is defined for a piecewise regular curve ξ with ξ(t) = x as

Aτ,t (ξ) =

 t

τ

Ψ∗(ξ̇ (s)) −


k≥1

(Bk(s) − Bk(τ ))F ′

k(ξ(s))ξ̇ (s)ds

+


k≥1

(Bk(t) − Bk(τ ))Fk(ξ(t)).

Using (9), the action can be expressed as

As,t (η) =

 t

s
Ψ∗(η̇(r))dr +

 t

s


k≥1

Fk(η(r))d Bk(r)

for any path η ∈ C1(s, t). A fundamental object is the one-sided minimizer defined as follows.
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Definition 4. Let t ∈ R. A piecewise C1 curve ξ :] − ∞, t] → R is a one-sided minimizer if

(i) for any ξ̃ ∈ H1(−∞, t) such that ξ̃ (t) = ξ(t) and ξ̃ = ξ on ] − ∞, τ ] for some τ < t , it
holds that As,t (ξ) ≤ As,t (ξ̃ ) for any s ≤ τ ;

(ii) for any s ≤ t, |ξ(s) − ξ(t)| ≤ 1.

Most of the properties of these one-sided minimizers are quite basic facts proved in [20].
Nevertheless we will make them precise because we work with a general convex flux instead of
the square function that was used in Burgers’ case. We stress the fact that we choose a slightly
different definition of the one-sided minimizer (we impose the boundedness when the value ξ(t)
is fixed) because we do not work on the torus as in [20] but on R.

Euler–Lagrange equations and properties of the action minimizers

The Euler–Lagrange equation can be formally deduced from the following classical
computation. If we want to find two curves γ and v such that v(t) = u(t, γ (t)), then we have the
relation

dv(t) = ∂t u(t, γ (t)) + ∂x u(t, γ (t))γ̇ (t).

With γ̇ (t) = Ψ ′(u(t, γ (t))) (or equivalently v(t) = (Ψ ′)−1(γ̇ (t))), together with (1), one writes

dv(t) = ∂t u(t, γ (t)) + ∂xΨ(u(t, γ (t))),

and we obtain the Euler–Lagrange equation
γ̇ (s) = Ψ ′(v(s))

dv(s) =


k≥1

F ′

k(γ (τ ))d Bk(τ ). (14)

The curve γ is a generalized characteristic in the sense of Dafermos (see [1]). Eq. (14) is a
generalization of the Euler–Lagrange equation (2.3) in [20] obtained for Ψ(z) = z2/2:

γ̇ (s) = v(s)

dv(s) =


k≥1

F ′

k(γ (τ ))d Bk(τ ).

In the following proposition, we prove that:

• there exists effectively a unique solution to Eq. (14),
• a minimizer of the action satisfies an Euler–Lagrange equation and is a regular curve,
• we give estimation for the velocities of such a minimizer.

For any times t1, t2 and any x1, x2 ∈ R, we define

Ht1,t2
x1,x2

=


ξ ∈ H1(t1, t2); ξ(t1) = x1, ξ(t2) = x2


.

Proposition 5. Let two times t1 and t2 be fixed.

(a) For ξ2 and v2 two fixed real numbers, there exists a unique solution ξ ∈ C1(t1, t2) to the
Euler–Lagrange equation
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ξ̇ (s) = Ψ ′(v(s))

v(s) = v(t2) +

 t2

s


k≥1

F ′

k(ξ(r))d Bk(r) t1 ≤ s ≤ t2 (15)

with the terminal condition (ξ(t2), ξ̇ (t2)) = (ξ2,Ψ ′(v2)).
(b) If γ is a minimizer of A on [t1, t2], that is

At1,t2(γ ) = inf
ξ∈Ht1,t2

x1,x2

 t2

t1
Ψ∗(ξ̇ (s)) −


k≥1

(Bk(s) − Bk(t1))F ′

k(ξ(s))ξ̇ (s)ds

+


k≥1

(Bk(t2) − Bk(t1))Fk(ξ(t2))


,

then γ̇ ∈ C1(t1, t2) satisfies for t1 ≤ r ≤ s ≤ t2

(Ψ∗)′(γ̇ (s)) − (Ψ∗)′(γ̇ (r)) =

 s

r


k≥1

F ′

k(γ (τ ))d Bk(τ ). (16)

(c) If γ is a minimizer of the action A on the time interval [t1, t2] with γ (t1) = x1, γ (t2) = x2
and t2 − t1 ≥ 1, then there exists a constant c such that

∥γ̇ ∥t1,t2,∞ ≤ c Ct1,t2 +


(t2 − t1)

−1
1+α + Ct1,t2(t2 − t1)

α
1+α


(x2 − x1)

1+β
1+α

+


(t2 − t1)

−1
1+α + Ct1,t2(t2 − t1)

α
1+α


C

1
1+α
t1,t2 + C

1
α
t1,t2(t2 − t1)

1
1+α


(17)

with Ct1,t2 =


k≥1 ∥Fk∥C2

supt1≤r≤r ′≤t2 |Bk(r) − Bk(r ′)|


.

We recall that we work on each trajectory of the random force. The proof of these results is
postponed to Appendix B.

Existence and uniqueness of one-sided minimizers

The following proposition establishes the existence of a one-sided minimizer. It is a short
rewriting of the one contained in [20], which takes care of the fact that we do not work on the
torus.

Proposition 6. For every x ∈ R and t ∈ R, there exists a one-sided minimizer γ such that
γ (t) = x.

Proof. Let n be an integer such that −n < t and γn a minimizer of A−n,t satisfying γn(t) =

x, γn(−n) = x + 1 and sup−n≤s≤t |γn(s) − x | ≤ 1. From the proof of Proposition 4, such a γn
exists. For −n < s < t we have ∥γ̇n∥s,t,∞ ≤ K by (17), where K depends on s and t but does not
depend on x . Hence, up to a subsequence, there exists γ ∈ H1(s, t) such that limn→∞ γn = γ

in C(s, t) and limn→∞ γ̇n = γ̇ weakly in L2(s, t). From the Euler–Lagrange equation (15)
it follows that limn→∞ γn = γ in C1(s, t) (after a new extraction of a subsequence). A
diagonal process implies that there exists γ ∈ C1(−∞, t) such that limn→∞ γn = γ for the
C1 convergence on any compact of ] − ∞, t].

It remains to prove that γ is a one-sided minimizer. By construction, (ii) in Definition 4 is
satisfied. Let a curve ξ ∈ H1(−∞, t) with ξ(t) = x and ξ = γ on ]−∞, τ ] for some τ . Without
loss of generality we can take ξ ∈ C1(−∞, t) because the action can be strictly decreased by
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smoothing a curve containing corners (see Fact 2 page 885 in [20]). Fix s ≤ τ and let (ξn)n≥1 be
a sequence in C1(s, t) such that ξn(s) = γn(s), ξn(t) = x and limn→∞ ξn = ξ in C1(s, t). We
have limn→∞ ξn(s) = limn→∞ γn(s) = γ (s) = ξ(s). Using Hypothesis II(d) we obtain

|As,t (ξ) − As,t (ξn)| ≤

 t

s
|Ψ∗(ξ̇ (r)) − Ψ∗(ξ̇n(r))|dr

+

 t

s


k≥1

(Bk(r) − Bk(s))F ′

k(ξn(r))

ξ̇ (r) − ξ̇n(r)

 dr

+

 t

s


k≥1

(Bk(r) − Bk(s))

F ′

k(ξ(r)) − F ′

k(ξn(r))

ξ̇ (r)

 dr

+


k≥1

(Bk(t) − Bk(s))

Fk(ξn(t)) − Fk(ξ(t))


≤ (C(R) + Cs,t )∥ξ̇ − ξ̇n∥L1(s,t) + Cs,t∥ξ̇∥L2(s,t)∥ξ − ξn∥L2(s,t)

with Cs,t =


k≥1 ∥Fk∥C2

supt1≤r≤r ′≤t2 |Bk(r) − Bk(r ′)|


defined as in (17) and R such that

∥ξ̇∥s,t,∞ ∨

supn≥1 ∥ξ̇n∥s,t,∞


≤ R. The above estimation implies that limn→∞ As,t (ξn) =

As,t (ξ). Moreover,As,t (γ ) − As,t (γn)
 ≤ C∥γ − γn∥C1(s,t) −−−→

n→∞
0,

with C depending on ∥γ ∥C1(s,t) and for −n ≤ s, As,t (γn) ≤ As,t (ξn) because γn is a minimizer
of A−n,t . Therefore

As,t (γ ) = lim
n→∞

As,t (γn) ≤ lim
n→∞

As,t (ξn) = As,t (ξ).

We conclude that γ is a one-sided minimizer. �

The intersection of one-sided minimizers

We will use for the first time the randomness of the force. Theorem 2 states that the fractional
Brownian noise is arbitrarily small on an infinite number of arbitrarily long time intervals: for
all ε > 0, T > 0, for almost all ω, there exists a sequence of random times (tn(ω))n≥1 such that
tn(ω) → −∞ and

∀n, Ctn−T,tn = sup
tn−T ≤s≤tn


k≥1


∥Fk∥C2

b (R)|Bk(s) − Bk(tn)|


≤ ε.

We remark that this property of the noise implies that the velocity of a minimizer will be as small
as we want, by (17).

The following proposition states that two different one-sided minimizers with the same
ends cannot intersect each other more than once (see [20, Lemma 3.2]). So if two one-sided
minimizers intersect more than once, they coincide on their common interval of definition.

Proposition 7. For almost all ω, for any distinct one-sided minimizers γ1 and γ2 on ] − ∞, t1]
and ] − ∞, t2] respectively, the following result holds. Assume that γ1 and γ2 intersect at time t
in a point x; then t1 = t2 = t and γ1(t1) = γ2(t2) = x.
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The proof of this result is exactly the same as the proof of Lemma 3.2 in [20] so we do not
repeat it. Nevertheless, it is based on [20, Lemma 3.3] which we do recall and briefly prove
because there are minor modifications due to our fractional noise.

Lemma 8. Almost surely, for any ε > 0 and any two one-sided minimizers γ1 ∈ C1(−∞, t1) and
γ2 ∈ C1(−∞, t2), there exists T = T (ε) and a sequence of random times tn = tn(ω, ε) → −∞

such thatAtn−T,tn (γi ) − Atn−T,tn (ζ )
 < ε, for i = 1, 2 and ζ ∈ {γ1γ2, γ2γ1}

where γ1γ2 and γ2γ1 are reconnecting curves defined by

γ1γ2(s) =
tn − s

T
γ1(s) −

tn − T − s

T
γ2(s)

γ2γ1(s) =
tn − s

T
γ2(s) −

tn − T − s

T
γ1(s).

Proof. For T sufficiently large, we use (6) in order to find a sequence of random times (tn)n≥1
such that limn→∞ tn = −∞ and

∀n, Ctn−T,tn = sup
tn−T ≤s≤tn


k≥1


∥Fk∥C2

b (R)|Bk(s) − Bk(tn)|


≤
1
T

, (18)

where the notation Ctn−T,tn comes from (17).
Now we make the following remark. If a curve γ minimizes the action on the interval [s, t],

then for any s < r < t , its restriction on [s, r ] will minimize the action with respect to curves in
H1(s, r) having the same ends as γ at s and r . Indeed suppose that there is a minimizer ξ ≠ γ on
[s, r ] such that As,r (ξ) = As,r (γ )− ε. Using (9), the action can be written using a true pathwise
integral with respect to the noise, so the action of any path η ∈ C1(s, t) is expressed as

As,t (η) =

 t

s
Ψ∗(η̇(s))ds +

 t

s


k≥1

Fk(η(s))d Bk(s).

Hence the action is additive with respect to C1 curves (Ar,t (η) = Ar,s(η) + As,t (η) if η is C1).
Considering the curve ξγr,t obtained by gluing the path ξ to the restriction of γ on [r, t], we
observe that

As,t (ξγr,t ) = As,r (γ ) − ε + Ar,t (γ ) = As,t (γ ) − ε < As,t (γ )

which contradicts the fact that γ is a minimizer on [s, t].
Therefore, the one-sided minimizers γi are minimizers on each time interval [tn − T, tn] and

we use the inequalities (17) and (18) to obtain that for any n

sup
tn−T ≤s≤tn

|γ̇i (s)| ≤
c

T
+ 2c


T −

1
1+α + T −

2
1+α + T −

1
α


≤

c̃

T 1/(1+α)
.
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Consequently, for ζ ∈ {γ1γ2, γ2γ1} we have ∥ζ̇∥tn−T,tn ,∞ ≤
2c̃

T 1/(1+α) . Using |Ψ∗(v)| ≤ c2|v|
1+β

and (18) we have

|Atn−T,tn (γi ) − Atn−T,tn (ζ )| ≤

 tn

tn−T

Ψ∗(γ̇i (s)) − Ψ∗(ζ̇ (s))
 ds

+

 tn

tn−T


k≥1

(Bk(s) − Bk(tn − T ))F ′

k(ζ )

γ̇i (s) − ζ̇ (s)

 ds

+

 tn

tn−T


k≥1

(Bk(s) − Bk(tn − T ))

F ′

k(γi (s)) − F ′

k(ζ(s))

γ̇i (s)

 ds

+


k≥1

(Bk(tn) − Bk(tn − T ))

Fk(ζ(tn)) − Fk(γi (tn))


≤ C


2 T

T
1+β
1+α

+ T
4 Ctn−T,tn

T 1/(1+α)
+ 2 Ctn−T,tn



≤ C


2

T
β−α
1+α

+
4

T 1/(1+α)
+

2
T


(19)

where C is a numerical constant. The result follows by choosing T such that the right hand side
of (19) is less than ε. �

An invariant measure: existence and uniqueness

In this subsection, we prove Theorem 3. First we construct the invariant solution u♯. We denote
as Mt,x the family of all one-sided minimizers with end x at time t . We define

u♯(t, x, ω) = inf
γ∈Mt,x

γ̇ (t). (20)

Proposition 7 implies an important property of one-sided minimizers. To any x ∈ R such that the
cardinal of Mt,x is at least 2 (this means that more than one one-sided minimizer comes to x at
time t), there corresponds a non-trivial segment I (x) = [γ1(t − T ), γ2(t − T )], where γ1 < γ2
on ] − ∞, t] because two different one-sided minimizers cannot intersect each other more than
once. Thus the segments I (x) are mutually disjoint. Consequently, for almost all ω, the set of
x ∈ R with more than one one-sided minimizer coming to x at time t is at most countable. The
above argument relies on the fact that an infimum is taken in (20) of u♯ and this is the key point
for proving that u♯(t, ·, ω) ∈ D (see [20, Lemma 3.8]).

The fact that u♯
∈ L∞(R) is a consequence of (17). The measurability issues can be treated

as in [20, Lemma 3.9].
Moreover on any finite time interval [t1, t2], for almost all ω, (t, x) → u♯(t, x, ω) is a weak

solution of (1) with initial data u0(x) = u♯(t1, x, ω). This is obtained by construction of u♯.
Hence St

ω(u♯(0, ·, ω)) = u♯(t, ·, ω). Thus the measure µ defined in Theorem 3 leaves the skew-
product transformation invariant.

It only remains to prove the uniqueness. This is also done in the proof of the Theorem 4.2
in [20]. Let us give a few details. For λ another invariant measure, we denote as λω its projection
on Ω in such a way that we may write that λ(dω, dv) =


Ω λω(dv)P(dω). The invariance of λ

implies that there exists a subset D of D such that λ(Dc) = 0 and with the property that for any
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v ∈ D and any n ∈ N, there exists vn such that H−n(vn) = v where the operator Ht maps the
solution of (1) at a negative time t to this solution at time 0. By repeating the end of the proof of
Proposition 6, we have that if a solution of (1) can be extended to arbitrary negative times, this
solution coincides with u♯ at time t = 0 for almost all x (because the set of x ∈ R with more
than one one-sided minimizer coming to x at time 0 is at most countable). Hence v(x) = u♯(0, x)

almost everywhere and λω(dv) = δu♯(0,·,ω)(dv), and we have the uniqueness.

5. An asymptotic property of fBm

The key point for proving the existence of an invariant measure was the fact that the fractional
Brownian motion has periods of arbitrary length and arbitrarily small amplitude oscillation as
time goes to −∞. The result stated in Theorem 2 is recalled below.

Theorem 2: For all ε > 0, T > 0, for almost all ω, there exists a sequence of random times
(tn(ω))n≥1, such that tn(ω) → −∞ and

∀n,

k≥1


∥Fk∥C2

b (R) sup
tn−T ≤s≤r≤tn

|Bk(r) − Bk(s)|


≤ ε.

Before proving this theorem, we will recall and prove some basic facts concerning the fBm
defined on the real line R.

First we deal with the moving average representation of the fBm (B(t))t∈R. For s, t ∈ R, we
define

ft (s) = cH


(t − s)

H−
1
2

+ − (−s)
H−

1
2

+


with

cH =


∞

0


(1 + s)H−

1
2 − s

1
2

2
ds +

1
2H

−
1
2

.

Notice that


R f 2
t (s)ds < ∞ and more precisely, if H ≠ 1/2, s → ft (s) behaves like (−s)H−3/2

when s → −∞ which is square integrable at −∞. Thus the fBm can be written as

B(t) =


R

ft (s)dWs

where the process (Wt )t∈R is a two-sided classical Brownian motion which is obtained by gluing
two independent copies of one-sided Brownian motions together at time t = 0.

Since we are interested in the oscillations of the fBm, we express its increments for t < t ′ < 0
as

B(t) − B(t ′) =


R

cH


(t − r)

H−
1
2

+ − (t ′ − r)
H−

1
2

+


dWr

=

 t

−∞

cH


(t − r)H−

1
2 − (t ′ − r)H−

1
2


dWr +

 t ′

t
cH (t ′ − r)H−

1
2 dWr

=


R

gt,t ′(r)dWr

where

gt,t ′(r) = cH


(t − r)H−

1
2 − (t ′ − r)H−

1
2


1]−∞,t](r) + cH (t ′ − r)H−

1
2 1[t,t ′](r).
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Let Fs be the sigma-algebra generated by the family of random variables {B(r); −∞ < r ≤ s}.
We remark that for s ≤ 0, Fs ⊆ σ {Wr ; −∞ < r ≤ s} := F W

−∞,s . Then we deduce the following
expression: for any −∞ < s ≤ t ≤ t ′ ≤ 0,

E(B(t) − B(t ′)|Fs) = E
 s

−∞

cH


(t − r)H−

1
2 − (t ′ − r)H−

1
2


dWr

Fs


. (21)

The proof of Theorem 2 is based on the following reversed conditional Borel–Cantelli lemma.

Lemma 9. Let (Fn)n≥1 be a decreasing sequence of σ -fields and (An)n≥1 a sequence of events
such that An ∈ Fn . Then the events

k≥1

1Ak < ∞


and


k≥1

E

1Ak |Fk+1


< ∞


are almost surely equal.

Proof. Let Mn = 1An − E(1An |Fn+1). We have E(Mn|Fn+1) = 0 so (Mn)n≥1 is a reversed
martingale difference sequence. This means that if we set for negative integers F̃n = F−n
and M̃n = M−n, (M̃n)n≤−1 is a martingale difference sequence with respect to the filtration
(F̃n)n≤−1. Moreover, (S̃n)n≤−1 defined by S̃n =

k=−1
k=n M̃k is an (F̃n)n≤−1 martingale.

Step 1: We prove that the following inclusion holds almost surely:
k≥1

E

1Ak |Fk+1


< ∞


⊂


k≥1

1Ak < ∞


. (22)

Using the stopping times

τK = inf


k ≤ −1;

k=n+1
−∞

E


M̃2
n |F̃n−1


> K


for K > 0,

and following [17, Theorem 2.8.7] (see also Theorem 4.1(v), p. 320 in [4]) we obtain that
k≤−1

E(M̃2
k |F̃k−1) < ∞


⊆


k≤−1

M̃k < ∞


almost surely.

In the reverse martingale formulation this means that
k≥1

E(M2
k |Fk+1) < ∞


⊆


k≥1

Mk < ∞


almost surely. (23)

Hence we write

E(M2
k |Fk+1) = E(12

Ak
|Fk+1) −


E(1Ak |Fk+1)

2
= E(1Ak |Fk+1)


1 − E(1Ak |Fk+1)


≤ E(1Ak |Fk+1). (24)

If


k≥1 E(1Ak |Fk+1) < ∞, then by (23)


k≥1 Mk is almost surely convergent. Using
k≥1 1Ak =


k≥1 Mk +


k≥1 E(1Ak |Fk+1), we deduce (22).
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Step 2: We prove that
k≥1

E

1Ak |Fk+1


= +∞


⊂


k≥1

1Ak = +∞


. (25)

For the event
k≥1

E(1Ak |Fk+1) = +∞


∩


k≥1

E(M2
k |Fk+1) < ∞


,

thanks to (23) we have


k≥1 Mk < ∞ and consequently
k≥1

1Ak =


k≥1

Mk +


k≥1

E(1Ak |Fk+1) = +∞.

So it remains to prove the inclusion (25) for the event

A =


k≥1

E(1Ak |Fk+1) = +∞


∩


k≥1

E(M2
k |Fk+1) = +∞


.

If (H̃n)n≤−1 is an (F̃n)n≤−1-martingale we define for n ≤ −1

⟨H̃⟩n =

k=−1
k=n

E

(H̃k − H̃k−1)

2
|F̃k−1


.

Now let (X̃n)n≤−1 be the martingale defined by

X̃n =

k=−1
k=n

S̃k − S̃k−1

1 + ⟨S̃⟩
3/4
k

=

k=−1
k=n

S̃k − S̃k−1

1 +


j=−1
j=k

E(M̃2
j |F̃ j−1)

3/4 .

We are working on the event A on which limn→−∞⟨S̃⟩n = +∞. Since

⟨X̃⟩n =

k=−1
k=n

⟨S̃⟩k − ⟨S̃⟩k−1
1 + ⟨S̃⟩

3/4
k

2

≤

k=−1
−∞


⟨S̃⟩k

⟨S̃⟩k−1

dt
1 + t3/4

2
≤


∞

0

dt
1 + t3/4

2 < ∞,

the martingale (X̃n)n≤−1 converges almost surely on A. Kronecker’s lemma implies that

lim
n→−∞

1

1 + ⟨S̃⟩
3/4
n

k=−1
k=n


S̃k − S̃k−1


= 0,
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and thus limn→−∞(
k=−1

k=n M̃k)/⟨S̃⟩
3/4
n = 0 or equivalently

lim
n→+∞

n
k=1

Mk
n

k=1
E(M2

k |Fk+1)

3/4 = 0.

Then there exists a random K > 0 such that for sufficiently large n we have
n

k=1 Mk ≥

−1/2
n

k=1 E(M2
k |Fk+1)

3/4
. With (24) we may write

n
k=1

1Ak =

n
k=1

Mk +

n
k=1

E(1Ak |Fk+1)

≥

n
k=1

Mk +

n
k=1

E(M2
k |Fk+1)

≥


n

k=1

E(M2
k |Fk+1)

3/4
−1/2 +


n

k=1

E(M2
k |Fk+1)

1/4
 ,

so limn→+∞

n
k=1 1Ak = +∞. The proof is now complete. �

Proof of Theorem 2. Let ε > 0 and T > 0 be fixed. Let (tn)n≥1 be a decreasing sequence of
negative real numbers such that

lim
n→∞

tn = −∞;

tn+1 < tn − T and
n≥1

(tn − tn+1)
H−1 < ∞.

Step 1: We prove the property for a single fBm (B(t))t∈R. We define Ftn = σ {B(r); −∞ < r ≤

tn} and for t ≥ tn+1 we set

Bn+1(t) = E(B(t)|Ftn+1)

B
n+1

(t) = B(t) − Bn+1(t).

By the Gaussian properties of the fBm it follows that B
n+1

(t) is independent of Ftn+1 . We set

An(ε) =


sup

tn−T ≤t,s≤tn
|B(t) − B(s)| ≤ ε


,

An(ε) =


sup

tn−T ≤t,s≤tn

Bn+1(t) − Bn+1(s)
 ≤ ε


,

An(ε) =


sup

tn−T ≤t,s≤tn

Bn+1
(t) − B

n+1
(s)
 ≤ ε


.

One has An(ε/2) ⊂ An(ε) ∪ (An(ε/2))c and then

1An(ε) + 1(An(ε/2))c ≥ 1An(ε/2).
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We take the conditional expectation with respect to Ftn+1 and we deduce that

E

1An(ε)|Ftn+1


≥ P


An(ε/2)


− 1(An(ε/2))c

because An(ε/2) is independent of Ftn+1 , while An(ε/2) belongs to Ftn+1 . Arguing as above we
also obtain

P(An(ε/2)) + P((An(ε/4))c) ≥ P(An(ε/4)).

We add these inequalities and we get

E

1An(ε)|Ftn+1


≥ P(An(ε/4)) − P((An(ε/4))c) − 1(An(ε/2))c . (26)

We will show hereafter that
n≥1

P((An(ε))c) < ∞, (27)

while

P(An(ε)) ≥ exp


−cT

εH


. (28)

Assume for a moment that these inequalities hold true. Then from (26) we deduce that
n≥1 E(1An(ε)|Ftn+1) = ∞ a.s. and by Lemma 9 we obtain


n≥1 1An(ε) = ∞ a.s., which

implies the expected result.

Proof of (27). Let tn − T ≤ s ≤ t ≤ tn . By (21) we have

Bn+1(t) − Bn+1(s) = E
 tn+1

−∞

cH


(s − r)H−

1
2 − (t − r)H−

1
2


dWr

Ftn+1


and for p ≥ 1 we obtain

E

|Bn+1(t) − Bn+1(s)|2p


≤ c

 tn+1

−∞

(s − r)H−
1
2 − (t − r)H−

1
2

2 dr

p

.

In the above integral we make successively the changes of variables v = r −s and u = v/(t −s).
This yields

E

|Bn+1(t) − Bn+1(s)|2p

 1
p

≤ c(t − s)2H
 tn+1−s

t−s

−∞

(−u)H−
1
2 − (1 − u)H−

1
2

2 du

≤ c(t − s)2H
 tn+1−s

t−s

−∞

(−u)2H−3du

where we have used the fact that for −u sufficiently big (and positive), |(−u)H−
1
2 − (1 −

u)H−
1
2 | ≤ c(−u)H−

3
2 . The above inequality is then true for sufficiently large n. Finally we

obtain that

E

|Bn+1(t) − Bn+1(s)|2p


≤ c


(t − s)(tn − tn+1)

H−1
2p

. (29)

Now we use the Garsia–Rodemich–Rumsey inequality (see [8]): let f be a continuous function,
and ρ and g two continuous strictly increasing functions on [0, ∞) with ρ(0) = g(0) = 0 and
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limx→∞ ρ(x) = ∞. Then it holds that

| f (t) − f (s)| ≤ 8
 t−s

0
ρ−1


4Cs,t

u2


dg(u)

with Cs,t =

 t

s

 t

s
ρ


| f (t ′) − f (s′)|

g(|t ′ − s′|)


ds′dt ′.

We apply the above inequality with ρ(u) = u4 and g(u) = u. Thus there exists a constant c and
a random variable δn such that

|Bn+1(t) − Bn+1(s)| ≤ δn × |t − s|1/2 with

δn = c

 tn

tn−T

 tn

tn−T


|Bn+1(t ′) − Bn+1(s′)|

|t ′ − s′|

4

ds′dt ′
1/4

.

By (29) and the Jensen inequality, it is clear that

E(|δn|
2p) ≤ cT p(tn − tn+1)

2p(H−1),

and we obtain

sup
tn−T ≤t,s≤tn

Bn+1(t) − Bn+1(s)
 ≤ c T 1/2δn . (30)

Now we write that

P((An(ε))c) ≤
1
ϵ

E


sup

tn−T ≤t,s≤tn

Bn+1(t) − Bn+1(s)


≤ c
T 1/2

ϵ
E(δn) ≤ c

T 1/2

ϵ


E(δ2

n)
1/2

≤ c
T

ϵ
(tn − tn+1)

H−1

and since


n≥1(tn − tn+1)
H−1 < ∞, we obtain (27).

Proof of (28). This inequality is a consequence of Talagrand’s small ball estimate (see [18]
or [14, Theorem 3.8]). Indeed, one needs al least T ε−H balls of radius ε under the Dudley metric
d(s, t) =


E|B(t) − B(s)|2

1/2 to cover the time interval [tn − T, tn]. It follows that there exists
a constant c such that

log P


sup

tn−T ≤t,s≤tn
|B(t) − B(s)| ≤ ε


≥ −c

T

εH

and we deduce (28). This achieves our first step.

Step 2: We prove Theorem 2 for the noise F(t, x) =


k≥1 Fk(x)Bk(t). With ck = ∥Fk∥C2
b (R),

we define

B(t) =


k≥1

ck Bk(t).

For t ≥ tn+1, we set Ftn = σ {Bk(r); −∞ < r ≤ tn; k ≥ 1} and

Bn+1(t) = E(B(t)|Ftn+1)

B
n+1

(t) = B(t) − Bn+1(t).
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Replacing B by B in the events An(ε), An(ε) and An(ε), we define the events An(ε),An(ε) and
An(ε) by

An(ε) =


k≥1

ck sup
tn−T ≤t,s≤tn

|Bk(t) − Bk(s)| ≤ ε


,

An(ε) =


k≥1

ck sup
tn−T ≤t,s≤tn

Bn+1
k (t) − Bn+1

k (s)
 ≤ ε


,

An(ε) =


k≥1

ck sup
tn−T ≤t,s≤tn

Bn+1
k (t) − B

n+1
k (s)

 ≤ ε


.

Clearly (6) will be proved as soon as the inequalities (27) and (28) are replaced by
n≥1

P((An(ε))c) < ∞ and (31)

P(An(ε)) ≥ exp


−cT

εH


. (32)

The inequality (30) is valid for any of the fractional Brownian motion Bk . Thus for any k ≥ 1

sup
tn−T ≤t,s≤tn

Bn+1(t) − Bn+1(s)
 ≤ c T 1/2δn

and we deduce that

P

(An(ε))c

≤
1
ε

E


k≥1

ck sup
tn−T ≤t,s≤tn

Bn+1
k (t) − Bn+1

k (s)


≤ c T 1/2


k≥1

ck


E(δn)

≤ c T (tn − tn+1)
H−1


k≥1

ck


.

We use


k≥1 ck < ∞ (Hypothesis III(a)) and (31) holds true.
Now we prove (32). We repeat the arguments of the proof of (28). We have for any k, n ≥ 1

P


sup

tn−T ≤t,s≤tn
|Bk(t) − Bk(s)| ≤

εk2/H

C


≥ exp


−c

T CH

εH k2


,

with C =


k≥1 ckk2/H < ∞ (Hypothesis III(a)). For each n the events

An,k(ε) =


sup

tn−T ≤t,s≤tn
|Bk(t) − Bk(s)| ≤

εk2/H

C


, k ≥ 1

are independent and ∩k≥1 An,k(ε) ⊆ An(ε). Then

P(An(ε)) ≥


k≥1

P

An,k (ε)


≥ exp


−c

T CH

εH


k≥1

1

k2


> 0

and (32) is proved. This completes our proof. �
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Appendix A. Proof of Proposition 4

Step 1: W satisfies the Hamilton–Jacobi–Bellman equation (13). We define

BR(t1, t2) =


ξ ∈ H1(t1, t2); |ξ(t1)| +

 t2

t1
|ξ̇ (s)|2ds ≤ R


which is clearly a closed and bounded subset of H1(t1, t2), and hence weakly compact. Now
we prove that there exists on BR(t0, t) one minimizer of ξ → F(ξ) := At0,t (ξ) + U0(ξ(t0)).
By the weak compactness of BR(t0, t) it is sufficient that ξ → F(ξ) is lower semi-
continuous. Following [7, Theorem I.9.1] we just have to check the lower semi-continuity of the
stochastic part

S(ξ) = −


k≥1

 t

t0
(Bk(s) − Bk(t0))F ′

k(ξ(s))ξ̇ (s)ds.

Let (ξn)n≥1 be a sequence of BR(t0, t) converging to ξ weakly. The weak convergence on
BR(t0, t) implies the uniform convergence on [t0, t]. Writing S(ξ) − S(ξn) = S1

n + S2
n with

S1
n =


k≥1

 t

t0
(Bk(s) − Bk(t0))


F ′

k(ξn(s)) − F ′

k(ξ(s))

ξ̇n(s)ds

S2
n =


k≥1

 t

t0
(Bk(s) − Bk(t0))F ′

k(ξ(s))

ξ̇n(s) − ξ̇ (s)


ds,

and by uniform convergence, limn S1
n = 0. The weak convergence and the fact that s →

k≥1(Bk(s) − Bk(t0))F ′

k(ξ(s)) belongs to L2(t0, t) yield limn S2
n = 0.

Hence we have the lower semi-continuity and thus there exists a minimizer ξmin ∈ BR(t0, t)
of ξ → At0,t (ξ) + U0(ξ(t0)). So for every t, x , there exists a minimizer ξmin ∈ H1(t0, t) with
ξmin(t) = x such that

W (t, x) = inf
ξ∈H1(t0,t)

ξ(t)=x

 At0,t (ξ) + U0(ξ(t0))


=

 t

t0
L(s, ξmin(s), ξ̇min(s))ds + U0(ξmin(t0)). (33)

Working with the right end-point condition ξ(t) = x in the calculus of variations will not affect
Theorems I.9.2, I.9.3 and I.9.4 of [7]. Thus there exists M such that for any (t, x) and (t ′, x ′) in
R × R,

|W (t, x) − W (t ′, x ′)| ≤ M

|t − t ′| + |x − x ′

|

. (34)

The equation satisfied by W will be obtained thanks to the following version of the dynamic
programming principle. Indeed we can observe that for any t0 ≤ r ≤ t ,

W (t, x) = inf
ξ∈H1(t0,t)

ξ(t)=x

 t

r
L(s, ξ(s), ξ̇ (s))ds + W (r, ξ(r))


.
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Now let 0 < h < t − t0 and take r = t − h in the above identity. We subtract W (t, x) from both
sides and we get

inf
ξ∈H1(t0,t)

ξ(t)=x


1
h

 t

t−h
L(s, ξ(s), ξ̇ (s))ds +

1
h


W (t − h, ξ(t − h)) − W (t, x)


= 0.

When h ↓ 0, we obtain

−
∂W

∂t
(t, x) + inf

ξ∈H1(t0,t)
ξ(t)=x


L(t, x, ξ̇ (t)) −

∂W

∂x
(t, x) × ξ̇ (t)


= 0

+
∂W

∂t
(t, x) − inf

q∈R


−q ×

∂W

∂x
(t, x) + L(t, x, q)


= 0

+
∂W

∂t
(t, x) + sup

q∈R


+q ×

∂W

∂x
(t, x) − L(t, x, q)


= 0

+
∂W

∂t
(t, x) + H


t, x,

∂W

∂x
(t, x)


= 0

where p → H(t, x, p) is the Legendre transform of q → L(t, x, q). Using the behavior under
translation of the Legendre transform, we have H(t, x, p) = Ψ(p+v(t, x)) where v is defined in
(11). In other words, for all t, x we have that W satisfies the Hamilton–Jacobi–Bellman equation
(13) (also referred to in the literature as the dynamic programming equation).

Step 2: semi-concavity.
The concavity of x → W (t, x) − K x2 is equivalent to

W (t, x) ≥
1
2


W (t, x + h) + W (t, x − h)


− K


1 +

1
t − t0


× h2, ∀x, h. (35)

Let ξmin be the minimizer of the action such that W satisfies (33) (we recall that ξmin(t) = x).
We introduce γx+h and γx−h in H1(t0, t) defined by

γx±h(s) = ξmin(s) ±
s − t0
t − t0

h,

thus satisfying γx±h(t) = x ± h and γx±h(t0) = ξmin(t0). We calculate

∆1
x,h = W (t, x + h) + W (t, x − h)

≤

 t

t0


L(s, γx+h(s), γ̇x+h(s)) + L(s, γx−h(s), γ̇x−h(s))


ds

+ U0(γx+h(t0)) + U0(γx−h(t0))

≤

 t

t0


L(s, ξmin(s), γ̇x+h(s)) + L(s, ξmin(s), γ̇x−h(s))


ds

+

 t

t0


L(s, γx+h(s), γ̇x+h(s)) − L(s, ξmin(s), γ̇x+h(s))


ds

+

 t

t0


L(s, γx−h(s), γ̇x−h(s)) − L(s, ξmin(s), γ̇x−h(s))


ds + 2U0(ξmin(t0))

≤ δ1
x,h + δ2

x,h + δ3
x,h + 2U0(ξmin(t0)),
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with obvious notation. First we evaluate the term δ1
x,h . We recall that since Ψ is uniformly convex,

for any real q we have Ψ ′′(q) ≥ θ . Then the Legendre transform L(s, x, p) = Ψ(·, γx+h(s)
∗

(p)

satisfies (see [5, page 131])

1
2

L(s, x, p1) +
1
2

L(s, x, p2) ≤ L

s, x, (p1 + p2)/2


+

1
8θ

|p1 − p2|
2.

Using the identities γ̇x+h + γ̇x−h = 2ξ̇min and γ̇x+h − γ̇x−h = 2h/(t − t0), we deduce that

δ1
x,h ≤ 2

 t

t0


L

s, ξmin(s), (γ̇x+h(s) + γ̇x−h(s))/2


+ C |γ̇x+h(s) − γ̇x−h(s)|2


ds

≤ 2
 t

t0
L(s, ξmin(s), ξ̇min(s))ds + C

h2

t − t0
.

We finally obtain that

δ1
x,h + 2U0(ξmin(t0)) ≤ 2W (t, x) + C

h2

t − t0
.

Now we write

δ2
x,h =

 t

t0


k≥1

(Bk(s) − Bk(t0))

F ′

k(γx+h(s)) − F ′

k(ξmin(s))

γ̇x+h(s)ds

=

 t

t0


k≥1

(Bk(s) − Bk(t0))γ̇x+h(s)

×

 1

0
F ′′

k ((1 − ν)γx+h(s) − νξmin(s)) (γx+h(s) − ξmin(s))dν


ds

=

 t

t0


k≥1

(Bk(s) − Bk(t0))

 1

0
F ′′

k


ξmin(s) + (1 − ν)

s − t0
t − t0

h


dν



×


ξ̇min(s) +

h

t − t0


s − t0
t − t0

h


ds

and analogously it holds that

δ3
x,h =

 t

t0


k≥1

(Bk(s) − Bk(t0))

 1

0
F ′′

k


ξmin(s) − (1 − ν)

s − t0
t − t0

h


dν



×


ξ̇min(s) −

h

t − t0


s − t0
t − t0

(−h)


ds.
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We compute the sum

δ2
x,h + δ3

x,h =

 t

t0


k≥1

(Bk(s) − Bk(t0))
h2(s − t0)

t − t0

×

 1

0


F ′′

k


ξmin(s) + (1 − ν)

s − t0
t − t0

h



+ F ′′

k


ξmin(s) − (1 − ν)

s − t0
t − t0

h


dν


ds

+

 t

t0


k≥1

(Bk(s) − Bk(t0))
h(s − t0)

t − t0
ξ̇min(s)

×

 1

0


F ′′

k


ξmin(s) + (1 − ν)

s − t0
t − t0

h



− F ′′

k


ξmin(s) − (1 − ν)

s − t0
t − t0

h


dν


ds

and using Hypothesis I and the identity 1

0


F ′′

k


ξmin(s) + (1 − ν)

s − t0
t − t0

h


− F ′′

k


ξmin(s) − (1 − ν)

s − t0
t − t0

h


dν

=

 1

0

 1

0
F ′′′

k


ξmin(s) + (1 − 2µ)(1 − ν)

s − t0
t − t0

h


dµ 2(1 − ν)

s − t0
t − t0

h dµ

we deduce that

δ2
x,h + δ3

x,h ≤ 2(t − t0)
λ+1


k≥1

∥F ′′

k ∥∞∥Bk∥t0,t,λ × h2

+ (t − t0)
λ

k≥1

∥F ′′′

k ∥∞∥Bk∥t0,t,λ × h2
× ∥ξmin∥H1(t0,t)

≤ C × h2.

As a conclusion we obtain (35).

Remark. By Alexandrov’s theorem (see Appendix E in [7]), x → W (t, x) is almost everywhere
twice differentiable.

Appendix B. Proof of Proposition 5

Proof of (a). We define

K B,F
t1,t2 =


k≥1

∥Fk∥C3


sup

t1≤r≤s≤t2
|Bk(s) − Bk(r)|


.
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For t1 < t < t2 the operator L : C1(t, t2) → C1(t, t2) is defined by

˙L(ξ) = Ψ ′(v)

v(s) = v(t2) −

 t2

s


k≥1


Bk(r) − Bk(s)


F ′′

k (ξ(r))ξ̇ (r)dr

+


k≥1


Bk(t2) − Bk(s)


F ′

k(ξ(t2))

with L(ξ)(t2) = ξ(t2) and ˙L(ξ)(t2) = Ψ ′(v2) = ξ̇ (t2). We have

∥ ˙L(ξ)∥t,t2,∞ ≤ |Ψ ′(v(t2))| + ∥Ψ ′(v) − Ψ ′(v(t2))∥t,t2,∞

≤ |ξ̇ (t2)| + L∥v − v(t2)∥t,t2,∞

≤ |ξ̇ (t2)| + L(t2 − t1)
λK B,F

t1,t2


(t2 − t1)∥ξ̇∥t,t2,∞ + 1


and since L(ξ)(s) = ξ(t2) +

 t2
s

˙L(ξ)(r)dr we may write

∥L(ξ)∥t,t2,∞ ≤ |ξ(t2)| + Ct1,t2(t2 − t)

1 + ∥ξ̇∥t,t2,∞


.

Consequently ∥L(ξ)∥C1(t,t2) ≤ |ξ2| + |Ψ ′(v2)| + C(t2 − t)(1 + ∥ξ̇∥C1(t,t2)) and the operator L
satisfies L(B0) ⊆ B0 with

B0 = {ξ ∈ C1(t, t2) : ∥ξ∥C1(t,t2) ≤ 2(1 + |ξ2| + |Ψ ′(v2)|)}

provided that t is small enough to ensure that C(t2 − t) ≤ 1/2. Let γ1, γ2 ∈ B0 and
νi = (Ψ ′)−1(γ̇i ) for i = 1, 2. The following identity:

ν1(s) − ν2(s) = −

 t2

s


k≥1


Bk(r) − Bk(s)


F ′′

k (γ1(r))

γ̇1(r) − γ̇2(r)


dr

−

 t2

s


k≥1


Bk(r) − Bk(s)


F ′′

k (γ1(r)) − F ′′

k (γ2(r))

γ̇2(r)

implies that

∥L(γ1) − L(γ2)∥C1(t,t2) ≤ C(t2 − t)∥γ1 − γ2∥C1(t,t2).

Hence L is a contraction on B0 (with t eventually smaller) and there exists ξ ∈ B0 such that
L(ξ) = ξ . Then there exists a unique solution in C1(t, t2) to the Euler–Lagrange equations
(15) for short time. By a concatenation argument, the existence and uniqueness is extended to
C1(t1, t2). �

Proof of (b). Since γ minimizes the functional At1,t2 , we have that for any ξ ∈ Ht1,t2
x1,x2 , ε →

d
dε

At1,t2(γ + εξ) equals 0 in ε = 0. This yields

0 =

 t2

t1


(Ψ∗)′(γ̇ )(s)ξ̇ (s) −


k≥1

(Bk(s) − Bk(t1))

F ′′

k (γ )γ̇ ξ + F ′

k(γ )ξ̇

(s)


ds

+


k≥1

(Bk(t2) − Bk(t1))F ′

k(γ (t2))ξ(t2).
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For t1 < τ1 ≤ τ2 < t2, we write this identity with ξn defined as

ξn(s) = 0 × 1[t1,τ1]∪[τ2,t2](s) + n

s − (τ1 − 1/n)


1[τ1−1/n,τ1](s)

+ 1[τ1,τ2](s) + n

−s + (τ2 + 1/n)


1[τ2,τ2+1/n](s).

We obtain

 τ2+1/n

τ2

n(Ψ∗)′(γ̇ (s))ds −

 τ1

τ1−1/n
n(Ψ∗)′(γ̇ (s))ds

= −

 τ2

τ1


k≥1

(Bk(s) − Bk(t1))F ′′

k (γ (s))γ̇ (s)ds

−

 τ1

τ1−1/n


k≥1

(Bk(s) − Bk(t1))(F ′′

k (γ )γ̇ ξn)(s)ds

−

 τ1

τ1−1/n
n

k≥1

(Bk(s) − Bk(t1))F ′

k(γ (s))ds

−

 τ2+1/n

τ2


k≥1

(Bk(s) − Bk(t1))(F ′′

k (γ )γ̇ ξn)(s)ds

+

 τ2+1/n

τ2

n

k≥1

(Bk(s) − Bk(t1))F ′

k(γ (s))ds.

We remark that supn ∥ξn∥∞ ≤ c and easy arguments allow us to let n go to infinity. Hence

(Ψ∗)′(γ̇ (τ2)) − (Ψ∗)′(γ̇ (τ1)) = −

 τ2

τ1


k≥1

(Bk(s) − Bk(t1))F ′′

k (γ (s))γ̇ (s)ds

+


k≥1

(Bk(τ2) − Bk(t1))F ′

k(γ (τ2))

−


k≥1

(Bk(τ1) − Bk(t1))F ′

k(γ (τ1))

which implies that τ → (Ψ∗)′(γ̇ (τ )) is continuous and since (Ψ∗)′ = (Ψ ′)−1, τ → γ̇ (τ ) is also
continuous. Consequently, and with

g(s) =


k≥1

(Bk(s) − Bk(t1))F ′′

k (γ (s))γ̇ (s)
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and the integration by parts formula (9), one may write

(Ψ∗)′(γ̇ (τ2)) − (Ψ∗)′(γ̇ (τ1)) = −

 τ2

t1
g(s)ds + g(τ2) − g(t1)

−


−

 τ1

t1
g(s)ds + g(τ1) − g(t1)



=

 τ2

t1


k≥1

F ′

k(γ (s))d Bk(s) −

 τ1

t1


k≥1

F ′

k(γ (s))d Bk(s)

=

 τ2

τ1


k≥1

F ′

k(γ (s))d Bk(s).

By the continuity of τ →
 τ

t1


k≥1 F ′

k(γ (s))d Bk(s) (see Prop. 4.4.1 in [22]), the above formula

is also true for τ1 = t1 and τ2 = t2. Thus the formula (16) is true and γ ∈ C1(t1, t2). �

Proof of (c). We recall that Ψ ′ is Lipschitz (Hypothesis II(a)) and the Legendre transform of Ψ
satisfies also the linear growth condition c1|v|

1+α
≤ |Ψ∗(v)| ≤ c2|v|

1+β with α = 1/k2, β =

1/k1 and two positive constants c3 and c4 different from those in Hypothesis II(b)).

Let t1 ≤ t ≤ t2 and s be such that |γ̇ (s)| = infr∈[t1,t2] |γ̇ (r)|. Writing γ̇ (t) = (Ψ ′
◦

(Ψ ′)−1)(γ̇ (t)) − (Ψ ′
◦ (Ψ ′)−1)(γ̇ (s)) + γ̇ (s), we have

|γ̇ (t)| ≤ L|(Ψ ′)−1(γ̇ (t)) − (Ψ ′)−1(γ̇ (s))| + |γ̇ (s)|

≤ L × ∆s,t +
∥γ̇ ∥L1(t1,t2)

t2 − t1
,

with

∆s,t = |(Ψ ′)−1(γ̇ (t)) − (Ψ ′)−1(γ̇ (s))|

= −

 t

s


k≥1


Bk(r) − Bk(s)


F ′′

k (γ (r))γ̇ (r)dr +


k≥1


Bk(t) − Bk(s)


F ′

k(γ (t))

≤ Ct1,t2 + Ct1,t2∥γ̇ ∥L1(t1,t2).

Consequently,

|γ̇ (t)| ≤ Ct1,t2 L +

Ct1,t2 L + 1/(t2 − t1)


∥γ̇ ∥L1(t1,t2). (36)

Now we estimate the L1 norm of γ̇ . We recall that c1|v|
1+α

≤ |Ψ∗(v)|. By Young’s inequality
ab ≤ (c1/2) a1+α

+ cb(1+α)/α and Jensen’s inequality we obtain t2

t1


k≥1


Bk(r) − Bk(s)


F ′′

k (γ (r))γ̇ (r)dr ≤ c (t2 − t1)C
(1+α)/α
t1,t2 +

c1

2

 t2

t1
|γ̇ (s)|1+αds.
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Since γ is a minimizer,

At1,t2(γ ) =

 t2

t1
Ψ∗(γ̇ (s)) −


k≥1

(Bk(s) − Bk(t1))F ′

k(γ (s))γ̇ (s)ds

+


k≥1

(Bk(t2) − Bk(t1))Fk(γ (t2))

and

c1

2

 t2

t1
|γ̇ (s)|1+αds ≤ At1,t2(γ ) + c (t2 − t1)C

(1+α)/α
t1,t2 + Ct1,t2 . (37)

By the minimization property of γ, At1,t2(γ ) ≤ At1,t2(ξ) with the curve ξ defined by ξ(s) =

x1 + (s − t1)/(t2 − t1) × (x2 − x1). Using |Ψ∗(v)| ≤ c2|v|
1+β we may write

At1,t2(γ ) ≤ c Ct1,t2 + c
(x2 − x1)

1+β

(t2 − t1)β
≤ c ((x2 − x1)

1+β
+ Ct1,t2)

where we used the fact that t2 − t1 ≥ 1. We report the above inequality in (37) and we get that t2

t1
|γ̇ (s)|1+αds ≤ c


(x2 − x1)

1+β
+ Ct1,t2 + C (1+α)/α

t1,t2 (t2 − t1)


.

Since ∥γ̇ ∥L1(t1,t2) ≤ (t2 − t1)α/(1+α)
∥γ̇ ∥L1+α(t1,t2), with (36) we obtain

|γ̇ (t)| ≤ c Ct1,t2 + c


Ct1,t2 +

1
t2 − t1


(t2 − t1)

α/(1+α)

×


(x2 − x1)

1+β
+ Ct1,t2 + C (1+α)/α

t1,t2 (t2 − t1)
1/(1+α)

and using the inequality (1 + x)a
≤ 1 + xa when a < 1 and x ≥ 0, we deduce (17). �
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