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We study the family of solutions of differential equations driven by fractional
Brownian motions when the Hurst parameter varies between 1/2 and 1. The drift and
the diffusion coefficient may also vary in a family of differentiable functions. We prove
that there exists a finite covering of this set of solutions by open balls of L2([0, T] % Q)
centred in some solutions of classical stochastic differential equations driven by a
Brownian motion.
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1. Introduction

Let H be a parameter that varies in (Ho, H;) with 1/2 < Hy = H; < 1. Suppose that
B = (Bf’ )cfo,r] 18 an m-dimensional fractional Brownian motion (fBm in short) with
Hurst parameter H. We mean that the components B/, j =1, ..., m, are independent
centred Gaussian processes with the covariance function

1
Ru(s,0) = 5 (tZH + 52— |t — sIZH). (1)

It is well known that BY has a-Holder continuous paths for all & € (0, H) (we refer to [13]
and references therein for further information about fBm and stochastic integration with
respect to this process).

We temporarily fix 1/2 < H < 1 and we consider the solution {X,,7 € [0, T]} of the
following stochastic differential equation (SDE) on R?:

m t 1
X;=x+ ZJ o (X,)dB! + J b'(X,)ds, 1 € [0,T], 2)
=1 0 0
i=1,...,d, xo € R? is the initial value of the process X.

Under suitable assumptions on g, the processes (o (X;))e(o.71 and B have trajectories
that are Holder continuous of order strictly larger than 1/2, so we can use the integral
introduced by Young [17]. The stochastic integral in (2) is then a path-wise Riemann—
Stieltjes integral. A first result on the existence and uniqueness of a solution of such an
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2 B. Saussereau

equation was obtained in [11] using the notion of p-variation. The theory of rough paths
introduced by Lyons [11] was used by Coutin and Qian in order to prove an existence and
uniqueness result for equation (2) (see [3]). The Riemann—Stieltjes integral appearing in
equation (2) can be expressed as a Lebesgue integral using a fractional integration by parts
formula (see Zéhle [18]). Using this formula, Nualart and Ragcanu have established in [14]
the existence of a unique solution for a class of general differential equations that includes
(2). The Malliavin regularity and its application to the absolute continuity of the law of X;
have been studied in [2,9,12,15]. The flow property of the solution of (2) is studied in [6].

In this work, we investigate further properties of the process X, solution of equation
(2). Tt is well known (and this will be recalled hereafter) that the fBm B¥ can be obtained
by a transfer procedure from a classical Brownian motion W. Let {X,,t € [0, T]} be the
solution of the following SDE on R

. . m ! PRI 4 PR—
X, =+ ZJ o (X)W, + J b(X)ds, 1 € (0,7,
j=170 0

i=1,...,d. The starting point of this work is the following remark. Assume for the
moment that m = d = 1 and the function o is identically equal to 1. A simple computation

shows that
15
X, - % = |B" — B + cJ B — W,[eds
0
and using Lemma 3.2 in [5], we obtain that
T -
[EJ X, — X,I°dt < c|H — 1/2]*.
0

In this simple case, when H is close to 1/2, the solution of the SDE (2) is close to the one
driven by the Brownian motion W. It does not seem clear that analogous results hold when
the diffusion coefficient is unspecified.

Our main result is that we can find a finite covering of the family of all the solutions of
(2) (when coefficients b and o belong to a certain class and parameter H varies in [H, H]
(1/2<Hy=H, <1)) by I]_2([O, T1 X% ) — open balls centred in solutions of equations
driven by the Brownian motion from which our fBms are transferred.

We mainly use two ingredients. The first one is the relative compactness in L2([0, T] X
Q) of this family of solutions and the second one is an approximation of the solution of
SDEs constructed by replacing the driving processes B in the stochastic integrals by its
polygonal approximation. In order to achieve this programme, we will need some
estimations of the solution deterministic differential equations driven by the Holder
continuous functions of order greater than 1/2. These estimations are stated in Section 3
and they are more precise and accurate than the estimations contained in [9]: we give the
precise behaviour (when H varies in (1/2, 1)) of the constants involved in our estimations.

In Section 2, we give the framework we use and state our results. The proofs of our main
result are given in Section 4. Finally, some technical lemmas are proved in the Appendix.

2. Notations and main results
2.1 Notations

We briefly point out the well-known framework for an m-dimensional fBm B (see [13]
for details). Let H be the Hilbert space defined as the closure of the set of step functions on
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[0, T] with values in R™ with respect to the scalar product

(X015 -+ Ljos1)> (Lo ---71[0,s,,,])>H: ZRH(tiaSi)'
i=1

We introduce the operator Kj, defined for any ¢ = (¢!, ...,¢") E Hand i=1,...,m
by

T
(K @")(s) = cus '/ THJ 1712 — 9"l

Thus, K, provides an isometry between the Hilbert space H and a closed subspace of
L?(0,T;R™) and it holds for any ¢, y € H,
(o, P = (Ko, K20 r.mm = E(B" (@B ().

The following inequality will be used in the following: there exists a constant ¢(7') that
depends only on T such that

T
* 2 _
Il 0.m = c(T)JOgozmrl/z " dt, 3)

provided that the right-hand side of the above inequality is finite.

There is a link between the stochastic integration of deterministic integrand with
respect to the fBm and with respect to a Wiener process which is naturally associated with
BH. This correspondence is usually called the transfer principle. The process W =
(Wejo,r) defined by

W, =B (K™ (Lo, -5 10))
is a Wiener process, and the process B! has the integral representation
t
B = J Ku(t,s)dW', i=1,....m,
0
where the square integrable kernel K is defined for s < ¢ by

l
Ky(t,s) = CHSI/Z’HJ (u — s)H*S/ZMH—l/z du

S

with

B HQH — 1) 12
““=\Be-2H,H-1/2)

(B denotes the Beta function). We set Ky(t,s) =0if s = t.

2.2  Main results

For cg, c1,co > 0 we denote

° Cg.o , the family of all differentiable functions ¢ : R? — R such that

lelle = co
Il = cis

k) c
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o (? the family of all twice differentiable functions ¢ : R — R such that

C0,C1,C2
lelle  =co
Idlle =ci

¢l = co.

We consider a family of fBms (B )reri /2,1y defined on a complete filtered probability
space (), F, (Fepo) [P’) transferred from a unique Brownian motion (Wt)tE[O T

Let H>1/2, xo € RY, b' and o/ belong, respectively, to CC o and CCO e fOr
i=1,....,d and j=1, ,m, we denote (X,(H,xp,b,0))cpor the solution of

equation (2)

m ot
Xi(H, x0,b,0) = xj+ J o Y(X,(H, xo, b, 7))dB{"
=170

t
+ J bi(X,(H,xo, b, 0))ds.

The main result of this work deals with the set S70#! of all the solutions of SDEs (2)

€0,C1,C2
driven by fraction Brownian motion B" (when H varies in [Ho, H1] and the coefficients

beC and o € ), namely

Cp,C1 C0,C1,C2

€0,C1,C2

SHU o= {(Xt(Hax07b70-))t€[O,T] : HO =H= H17 |.X()| = €o,

biec!

co,C1?

cVEC o i=1,....d, j:I,...,m}.

Our result states that we can find a finite covering of S71 by open balls of L*([0, T X

€0,C1,C2
Q) centred in some solutions of SDEs driven by the Brownian motion W.

THEOREM 1. Let ¢g, ¢1,¢2 > 0and 1/2 < Hy = H; < 1. There exists R > 0, an integer N
and for k =1, ..., N there exists:

e some initial values x) o € R? such that lx@ 0l = co,

e some drift coefficients b;k) € CCO o fori=1,....d,
e some diffusion coefficients o éjk) S C?O nefori=1....dandj=1,....m

such that the set
N —_
st < |J{z € a0, 11x ) 1Z = X llzgorma) < R}
k=1
where the process (X(k)-,f)IE[O,T] is the unique solution of the SDE

X . m t L . 5 . _
Xl(k),r = xék),o + E JO‘T éz)(X(k%s)des + Jobfk)(X(k),x)ds .
=1

We will make use of the following compactness property of 1t6’s functional. This property
has its own interest.

ProOPOSITION 2. For any c¢g,c1,¢; >0 and 1/2 < Hy=H; <1, the set SZ":QZ is
relatively compact in L2([0, T] X Q).
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The classical counterpart of this property for Brownian motion can be found in [4].
To prove these results, we will need estimations of the solution of (2) uniformly when
the drift coefficient is in class Cio‘(,] and when the diffusion coefficient is in Cf{m - This s

quite classical. The uniformity with respect to H € [H, H,] of our estimations requires
more technical computations and is less classical. This is the aim of the next section.

3. Deterministic differential equation driven by rough functions

First, we introduce some preliminaries. For0 < A = 1 and 0 = a < b = T, we denote by
CMa, b; Rd) the space of A-Holder continuous functions f : [a, b] — Rd, equipped with the
norm

Iy = N fllapeo + Wl

where

e = sup 17
L) = fo)l

a=r=s=p |s —r|*

We simply write C*(a, b) when d = 1. Suppose that f € C*(a,b) and g € C*(a, b)
with A + @ > 1. From [17], the Riemann-Stieltjes integral fodg exists. In [18], the
author provides an explicit expression for the integral [, fdg in terms of fractional
derivatives. Let a be such that A > « and B> 1 — a. Then, the Riemann—Stieltjes
integral can be expressed as

Wfllapn =

b b
J frdgr = (= 1)“J (D5, f) (D) (Dy="gp- ) (1), “

a

R A (RN (R
Pal =1 ((r—a>“+“L<r—s)““ds>’

_a)

where

and

Dy gy () =

(=D (g(t) —gb) " an g(n) — g(s) ds)
Fl-—a\ G- P s= 0t )
We refer to [16] for further details on fractional operators. Set 1/2 < B <1 and let

geC B(O, T;R™). We shall work with deterministic differential equation on R? of the
form

! m t
X, =xo+ J b'(x;)ds + Zj o (x)dgl, t€10,T], )
0 =140
i=1,...,d, xo € R’ We introduce the following assumptions.

Hl: There exists by, b; € R such that b’ € Ctlyo.b,’ l=i=d.

H2:  There exists co,ci,c» € R such that ¢/ € C?

=7 < <7<
C0,C1 .62 l=i=dand 1 =j=m.

It is proved in [14] (Theorem 5.1) that if 1 — 8 < a < 1/2, the above equation has a
unique (1 — a)-Holder continuous solution. The estimates on the solution (x;),e(o 7
obtained in [14] were improved in [9]. The following result is a more precise and accurate
version of these estimates.
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THEOREM 3. Let g be Holder continuous of order 1/2 < B < 1. Assume that b satisfies
condition (H1) and o satisfies (H2). Then for all 7, there exists a constant k(7 that
depends only on T such that the solution (x;),c[o,7) Of equation (5) satisfies

1+1/8
. (ngo,m) 1 ©

Iellg = bxol + k(T)(bo v co)(t ) | T+ { 0

Proof. We follow the arguments developed in [9]. We restrict ourselves to the case
d = m =1 for simplicity.
First, we prove that

lIxllo.7.00 = lx0l + k(T)(bo V co)

Cq ||g||0,T,B /8
(55 ] v

With 1 — B < @ < 1/2, we use (4) and we obtain forall 0 < s, =T

t t
J o (x)dg,| = J D2, (5,)D) g, (r)ldr.
We have
-« B _ o jat+p-l
|D,"%g-(r)| = @i B- 1@ llgllor glt — 7l and
« €o _ -« acy _ B—a
|D§, o (x)| = Ti—w (r—s)“+ B-al(-a lIxlly . g(r — 9P (8)
It follows that
t 1
COIB N aat+pB—1
La(xr)dg, T e ||g||o,sz(r 974 — B dr

+ Bacy
B-—a)a+B— D'~

) ”gHO,T,B”x“s,z,B

J (r— P~ —r*F 1ar.

S

We recall that the Beta function is defined by B(a,b) = fé(l — HaTlghlag =
((I'(@)T'(b))/T'(a + b)). The change of variables r = (r — s)& + s implies

t
ja(xr)dg, < kagligllorglcot = )P + cillxlly, gt — )] with

BB+ Bl - . apBatpltp-
ap = (a+B—Dl')I'1 —a@) (a+B—DH(B— ' ({1 — a)'

€))

k

We will prove hereafter that in fact k, g = /(B8 — 1/2), where k is a universal constant
independent of H. For the moment, we write

Ix, = x,| = (t = $)bo + kagllgllo.r g[cot = )P + cillxlls, 5t — $)°F]
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and if |t — s| sufficiently small
xllsp = (2 = )" "Pbo + cokapllgllor g + cikapllxlls, gt — $)P
= (T""Pby + cokagllglorp[1 = cikagllglor s =] (10)
It follows that
bl = Il + llxlls o — 5)P

_ -1
= x| + ((T‘ Pho + cokapllglorp) [1— cikagllgllor st — 7] )(r—s)ﬁ.

Let B = T'"Pby + cokagllgllor g and A = cikagllgllo 5. We divide the interval of length
A=(1- B)/A)l/ P and we apply recursively the above inequality. Consequently, we
have

AU-B/B
B(1 — B)(l—ﬁ)/ﬁ'

and since for 1/2 < B < 1, B(1 — B)#~V/F = 2e!/¢ = 3 we can write that

lIxllo7.00 = Ixol + TB(1 — AAP)'APT! < |xo| + TB

)(I*B)/B )I/B‘

lIxllo.7.00 = lxol +37(1 4+ T)by (Clka,B”g”o,T,B +3Tcy (Clka,/;”g”o,T,B

But for 1/2 < B < 1and x>0, x'/f 4+ x!/F~1 < 2(1 4+ x'/P) and we get
bllo oo = ol + 671 +bo v co)[1 4 (erkagliglorg) *]- D)

Now we estimate k, g defined in (9). We rewrite kq g as

= Bl'(a+ B) ( 1 N o1+ 8- )
BT @+ - D@ \TA+8)  (B—al(—-al(+28))

We remark that

I2=a+B=3/2, 32=14+B=2, 1=14+B-a=2,
12=1—a=1and 1 =1+2B8=3.

So if we denote 'y = sup,e(y/23)1'(x) and yo = inf,gp; 2 3['(x), using B = 1 implies

r 1 1/2I°
kaﬁ = 0 <— + / 0 ) .
T(a+B-Dl@\n B-ay
It remains to treat the singularity when « is close to 0 (or equivalently 3 close to 1). First if
a+ B — 1> a, then
1 1
= -
(a+B-—Dl'(w) ol(a)

1 as «lO.

In the second case when a+ B — 1 < «, we use the fact that the function x — I'(x) is
decreasing for small values of 0 < x =1

1 1
(@a+B- (@ (a@+B-DlatB—1)

1 as alO.
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Consequently, there exists a universal constant « such that k., g = k/(8 — «). Moreover,
a < 1/2 implies that 1 /(B — a) < 1/(B — 1/2) so we have

K

5.3_71/2'

Since x — x!/# is an increasing function, we deduce that

K 1/B 2
(B - a) (B

We report the above estimation into (11) and we get the existence of a constant that
depends only on T such that (7) is satisfied.
Now we show that

kep 12)

1
Illor.s = KTEo v eosey/® |14 ( ZZ5 7

Set A = (2A)"'/. On one hand, if |r — s| = A, we use (10). On the other hand, when
[t — s| > A, we write

1+1/8
L (Mgno,T,B) 1 13

b =l _ b m sl b =l e maeal 0 B =l
It — s|? It — s|? AP AP
t_
= %B(l — AAP)"! < 2TB(24)"/# < 8TBA'/*.

We finally obtain that

lxllo.rp = 8T(T' o + Coka,;;”g”omﬁ)(Clka,5||g||0.r,ﬁ)UB
= 1671+ T)(bo V co)e}/® (1 + Ckapliglorp) /%),

and now we use (12) to obtain (13). Steps 1 and 2 imply (6). O

The next theorem gives the estimate for a linear deterministic equation. This result will
be necessary to study the Malliavin regularity.

THEOREM 4. Let g be Holder continuous of order 1/2 < 8 < 1. Assume that b and o
satisfy, respectively, (H1) and (H2). Let x be” the solution of (5) and for i =1, ...,d,
j=1,...,m,0=s =<1t =T, consider s — ®V(s) satisfying

d t d m gt
@) = o)+ [ b etom+ Yo [ twetion, a4
k=195 k=1 I=1"YS

and ®(s) = 0 if s > 1.
For all T, there exists a constant k(7) that depends only on 7 such that

||g”0TB>
sup |P,(s)] =c¢ P 15
s 1001 = cof (1000 (1s)

. ®)llsrp = cof ( /'g'gﬂ‘)’lT/*‘;) : (16)
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with
£12) = exp Ko ¥ b) + (o V 1 V e2))#]

F2) =KD (o v )+ (o v 1 v )8 )12

Proof. For simplicity we set d = m = 1. We refer to [15] for the existence and uniqueness
of a solution of equation (14). We adapt the Proof of Theorem 3.2 in [9].
First we prove (15). We fix s and let # = t = s. Instead of (8), we write

a D ()|ls.00 Cw
|Ds+0-/(xu)q)u(s)| = 1[‘(17—0()(14 — )
_ % _ oB-a
+ (:8 _ 0[)1—‘(1 — Ol) ”(I).(S)”s,u,ﬁ(u S)
e _ o\Ba
a1 Ol — 7

and consequently
1D.livp = = 0" BP0 + crkapllgllor slP.($)l oo
+ cakapligllor gllixll s gll® ()l v oo — 1)P
+ cikagligllor gll® ()ll,o g — 0P
= [((1 + Dby + cikapllgllor )P (DIl 1 0o
+ ok pligllorslixlle gll® oo — 0P
(1 = crkagllgllorp? — I)B)il-

We divide the interval [s, T] into n = (T — 5)/A subintervals with A = ¢ — . We denote

a7

A= (c1V ckapllgllorss
B=(14T)boV b))+ (coV ckapllgllors
and thanks to (10) we rewrite (17) as
. = Il .ol B+ AAB( = AN 1)1 — AAF)TIAP (18)
We write
1D (lroo[1 — [14 AAP(1 — AAP)T1I(1 — AAP) " BAP| < |®,(s)|
and then

sup |®,(s)| = C sup |®,(s)|, where

s=r=r S=r=t
C=[1 - (1+AAP( — AAPY )1 — AAP)BAP] .
Let n = (T — s)/A. If we denote Z,,(s) = Sups=,=s1ua|P,(s)], we have
Zy(s) = CZy—1(5) = --- = C"Zo(s) = C"|o (x,)| = C'eo.

Consequently,

sup |D,(s)] = co[1 — (1 +AAP(1 — AAPY )1 — AAP)IBAP=T—9/A,

s=t=T
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If we choose A = (3(A V B)) VA then it satisfies AAP < 1/3 and BAP < 1/3. Hence,

sup |@,(s)] = o494

s=t=T

= coexp (4T[(1 + Dby V b) + kapleo V 1 V e2)ligllor] '),

and using estimations (12) of k. g we deduce (15).
We prove (16). On one hand, if |# — ¢| = A we write

|CI),(S) - CDz’(S)l < |(I),(S) - q)zfA(S)l +--+ |(I)z’+A(S) - CD,/(S)|
¢ — 1P ¢ — 1P
- |Dy(s) — Dy—als)] |q)t’+A(S) = Dy(s)
==y Uty

Then, we use (18) with A = (2(A V B))fl/ﬁ and we obtain

It’ 1

NP ()l yp = 1D ()l ool 1 +AAP(1 — AAP) (1 — AAP)~'BAP

= k(T)(A VB D (5)ll,.1 00

On the other hand, when | — 1| = A, we use directly (18). In both cases, taking into
account (15) yields (16). O

4. Proof of Theorem 1

The results of the stochastic differential equation (2) are obtained almost surely using
equation (5) when we replace g in (5) by the trajectories of the fBm. More precisely in [14]
(Theorem 2.1), the authors proved that the stochastic process X exists almost surely and
t— X, (w) € C'"%0,T;R?) with 1/2> a>1—H and 1/2 < H < 1. Theorem 3 will
be useful in this context as soon as we have some estimation of the exponential moments
of the Holder norm of fBm’s trajectories. This is the scope of the following classical
Lemma (a self-contained proof is proposed in the Appendix).

LEMMA 5. Let 1/2 <Hy=H <1,Hy—1/2>¢>0and p = 1/¢, then
B — B < & e =570 i=1,...,m, (19)
where &y . is a positive random variable such that

E( ) <(16\/—T)2”( p) (20)

Let k < 2. For any constant c, there exists a constant C,r such that

sup E[exp(cllBY|l};_,)] = Cir. 1)

Ho=H<1

Now we introduce the following notations.
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We denote by B" the polygonal approximation of the fBm B and W" the polygonal
approximation of the Wiener process W. These approximations are defined by

n—

n
B' = (Bfk’ o= tk)<Bfk’+1 - Bff)>1<zk<u+1](f)’
k=0
n—1 n
W;l = (Wzk + ?(t - tk)(Wtk+l - Wtk))l(fksthrl](t)’

k=

[=)

where {0 =1y <t <.--<t, =T} is a uniform partition of the interval [0, T] (that is
ty = kT /nfork =0, ..., n). As usual we will approximate the solution of SDEs thanks to
these polygonal approximations when one replaces the driving processes in the stochastic
integrals by its polygonal approximation. So we consider the following equations for
O0=r=T,i=1,...,dandn=1:

m t t
X = xi + ZJ o ¥(X")dBY + J bi(X")ds, (22)
=170 0
P . m 4 P . 4 PR
XM=+ ZJ o AW + J bi(X")ds. (23)
j=1 0 0
It is well known in the Brownian case (see [10]) that
1im[E< sup X} — )‘(,|2> =0, (24)
=0\ 0=t=T

where we recall that the process X is the unique solution of

m

X§=x6+2

j=1
bix) = b'(x) + 1 Zd: zm: 9 o () ) ok (x) (25)
2 axJ ’

=1 k=1

t 1
J o (X)W +J bi(X,)ds with
0 0

An analogous convergence property holds true for the Wong-Zakai type approximation of
the SDE (32). Indeed, the almost-sure convergence is proved in [6]. Using (27) (in the
following lemma), we will deduce by a dominated convergence argument that

T
lim [EJ X, — x7|*dr = 0. (26)
0

n—oo

LemMA 6. If (X})g<,<7 is the solution of the random ordinary differential equation (22),
then

sup [E( sup IX:‘IZ) =c. 27

n=1 0=t=T
Proof. Let 1/2 < B < H.
We prove that there exists a random variable &y g such that

sup El&ypl” <oo and supllB"llorps = T"up. (28)
He(/2,1) n=1
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Weset) < s <t <Tandweassumethatt; <s = ;. and t; <t = f;41. On one hand, if
|t — s| = T/n, then using (19) with ¢ = (H — B8)/2 we have

n
187 = B = 1B, — Bl + | (1) = (B, = Bu)

+ ‘(%) (t —1)(By,, — By)

T H—¢
= |sz - Btml + |Bt1+1 - Btll + 2§H,s (;)
H— _
= Guelt — sI" 7+ 38T/,
and then
187 — B
It — s|?
On the other hand, if [t —s| = T/n, thenfy, < s <t =t Or ) < s =1 <1 = 4.
In any of these two cases, we have

= §H_8T”/2(1 +3n ‘”/2) < 4, TH. (29)

|B? — Byl

L Y (30)
[t — sl

Using (29) and (30) and the integrability property (20) of &y ., we deduce (28).
Now, we apply Theorem 3 (precisely the estimation (7)) with g = B" and we obtain

clnB"nom)”B
sup | X' = Cre + Cro | ——————== . 31
e Xl = Cra T’°<(B—1/2) G

O
Using (28), we deduce (27).

Now, the proof of Theorem 1 is simple.

Proof. We write
”Xt - Xz”u}(m = ”Xt - X:l”u_z(m + ”X:l - X;'”u}(()) + ”X:l - Xt”u_z(g),
and then we use (24) and (26) in order to find ny = 1 such that
llx — Xno”ll.z([o,T]xQ) + X" - Xllﬂ_z([O,T]xQ) =1L

Thanks to Lemma 6.7.2 in [10] and (27), we obtain the existence of a constant C > 0 that
depends on T, Hy, ¢y, ¢; and ¢, such that

llx™ — Xno”ﬂ_z([o,T]xQ) = ”Xn”[l.z([o,T]xQ) + ”)_(n”I]_z([O,T]xQ) =C.

Let R = C + 1. We define
€0,C1,C2

S\ = {(XI)IEIO,TI : X is the solution of (25) with |xo| = co,

b EC;O’CI, all EC?O’CI_’CZiZ I,....d; j=1, ,m}
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It holds that

st ¢ |J {zelq0.11x D 1Z ~ Mo < R}
xes!l’ .,

and the relative compactness of Sfoth iy I]_Z([O, T1x Q) (Proposition 2) yields

€0,C1,C2

Theorem 1. O

5. Proof of Proposition 2

To prove the relative compactness of the set SZ)”CF]' e,» We use the relative compactness
result proved in [1] (similar result can be found in [4,19]). These results state that this set is
bounded in I]_z([O, T % ) and if we have the boundedness of the Malliavin derivative (and
of their increments), then our set will be relatively compact (see [1], Theorem 2 for a
precise statement).

First, we review the properties that we easily obtain, thanks to the previous technical

results of this work. Any process X € S0 qatisfies for i =1, ...,d

€0,C1,C2

m

t t
Xi=xj+Y La (X,)dB + Jobi(xs)ds, t€10,T]. (32)
=1

Applying Theorem 3 and Lemma 5 will give the following properties:

sup ||X||[Lz([07T]XQ) < o0, (33)

0-H]
xesiodh,

Indeed by Theorem 3

T H 2/B
cillB™ o7 p

E| |X,1°dt =< Cro, + Cro E| [ ————2LE ,
Jol ! Tao + (T K(B—l/z)

and by Lemma 5, ||B¥|| 5 has moments of all orders uniformly bounded with respect to H.
Since 1/2 < Hy = H = H; < 1, we can choose 8 = 1/2(H + 1/2) and we have

T 4
sup [EJ IX,I’dt = Cr, + Cr ) = C(T,co,c1,Hy),

Hy=H=H, 0

c1c(T)
(2Ho — 1)

and consequently (33) holds. Using the same arguments, we obtain that for any 0 < a <
b < T and h € R (such that |4| < min(a, T — b))

b
sup J |EX,s — EX,|*dr— 0 as |h| — 0 and (34)

0-H1
xes oL,

a

sup |EX,|’dt— 0 when |0 and b1T. (35)

xespotn, J [0,71\(a;b)

We moreover need similar bounds in the Malliavin derivative, so we briefly recall the
classical notation of Malliavin’s calculus (see [13]). First, the derivative operator D is
defined on the set of smooth cylindrical random variables S of the form

F=f(B"(¢), ...,B"(¢n), (36)
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where n = 1, f € C;(R") (fand all its partial derivatives are bounded), and ¢; € H. The
derivative of a smooth cylindrical random variable F of the form (36) is the H-valued
random variable

n a
=3 L (. ... B e) e

i=1

This operator is closable from L?(Q) into LP({); H) for any p = 1 with respect to the norm
1
IFN, = [EAFP) + E(ID"FIR,)] .

There is a relation between the Malliavin calculus with respect to the fractional Brownian

motion B and the Malliavin calculus with respect to the Brownian motion W. Denoting D

the derivative operator with respect to W (and D‘14}2 its domain) we have for any
12._ pl2

FeDy =D,

K;(D"F) = DF. 37)
Using the results of [15], the Malliavin derivative D/X!, i=1,...,d,j= 1, ...,m of the

s
process X exists and satisfies almost surely the equation

d m t
DX = X)+Y Y J 8y (X, )DI X Bt
=1 1=19s

s

d t
+ J axb'(X,)D" Xk du,
k=1

if s = rand 0 if s > 7. We remark that we can apply Theorem 4 for the trajectories of the
Malliavin derivative. Combined with Lemma 5 and inequality (3), we deduce that,

T
sup J [1X]12,12dr < oo, (38)
xeshodn Jo

Indeed we have

T ¢T T ¢T
J J |D9Xt|2d0dt:J J |5 (D" X,)(0)*d6dr
0J0 0J0

T ¢T
= c(T)J J IDEX,1%0"/>" " d6dz,
0J0

and thanks to (15) from Theorem 4 and (21) from Lemma 5 we obtain (38). In the same
way we have

sup |DgX,|*d6dt — 0 when a,d' |0 and b,b' 1T. (39)

‘|

xexesiol  JOTP\@bx@ )
ey ¢

In order to have the relative compactness property, it remains to prove that for any

0<a<b<T,0<d<b<T and h,W €R (such that |h| V |W| < min(a,d,T —

b, T— b'), it holds

b b
sup [EJ J Doy nXiow — DeX,|*d6dt — 0 when |h| — 0 and |K|— 0. (40)

Ho.Hy
XES ey ke

add
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The proof is a little bit more technical. We write

b ot/
[EJ J IDoiXiiw — DoX°d6ds < 1,(H) + Ir(h)

a

with
b b )
L(W)=E |DgsnXisw — Do X,|"d6dz
b b N
=E| | (KD X)(0+ ) — (K, D X,)(0 + W)l dodr,
b b
L(hy =E| | |DgeX, — DoX,I*d6ds
) b b
=E| | 10K;,D"X,)(0+ h) — (K;;D"X,)(6)|*d6dr.

Using (3) and (16) in Theorem 4

b b
nat) = c(T)[EJ J IDH X, — DI X, P02 Hdodr

a

= (T, o) Jbrlel/z‘”dedr E|f 18"l 2|h’|’3
N 0 ald ? B_ 1/2

and the uniform convergence follows from Lemma 5. We will obtain the expected
convergence result for the term I(h) using the following inequality: for & <
(Ho—1/2)A1/4

a/

CTI’ZZS
eX(Hy — 1/2 —¢)

b b
J J (1 +¢'27172)| Dy X, |2 d6ds 1)

a

Ly =

a

and the claim follows from (16) and Lemma 5. The proof of (41) is easy but tedious, so it is
postponed in the Appendix.

References

[1] V. Bally and B. Saussereau, A relative compactness criterion in Wiener-Sobolev spaces and
application to semi-linear stochastic PDEs, J. Funct. Anal. 210(2) (2004), pp. 465-515.

[2] F. Baudoin and M. Hairer, A version of Hérmander’s theorem for the fractional Brownian
motion, Probab. Theor. Relat. Fields 139(3—4) (2007), pp. 373-395.

[3] L. Coutin and Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian
motions, Probab. Theor. Relat. Fields. 122(1) (2002), pp. 108-140.

[4] G. Da Prato, P. Malliavin, and D. Nualart, Compact families of Wiener functionals, C.R. Acad.
Sci. Paris Sér. T Math. 315(12) (1992), pp. 1287-1291.

[5] L. Decreusefond, Stochastic integration with respect to Volterra processes, Ann. Inst.
H. Poincaré Probab. Statist. 41(2) (2005), pp. 123-149.

[6] L. Decreusefond and D. Nualart, Flow properties of differential equations driven by fractional
Brownian motion, in Stochastic Differential Equations: Theory and Applications, Vol. 2,
Interdisciplinary Mathematical Sciences, World Scientific Publishing Co., Hackensack, NIJ,
2007, pp. 249-262.



Downloaded by [Bruno Saussereau] at 05:41 09 February 2012

16

(7]

(8]
(9]

[10]

[11]

B. Saussereau

X. Fernique, Regularité des trajectoires des fonctions aléatoires gaussiennes, in Ecole d’Eté de
Probabilités de Saint-Flour, IV-1974, Vol. 480, Lecture Notes in Math, Springer, Berlin, 1975,
pp. 1-96.

A.M. Garsia, E. Rodemich, and H. Rumsey, Jr., A real variable lemma and the continuity of
paths of some Gaussian processes, Indiana Univ. Math. J. 20 (1970/1971), pp. 565-578.

Y. Hu and D. Nualart, Differential equations driven by Hélder continuous functions of order
greater than 1/2, in Stochastic Analysis and Applications, Abel Symp., Vol. 2, Springer, Berlin,
2007, pp. 399-413.

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Vol. 24,
North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, 1981.

T. Lyons, Differential equations driven by rough signals. 1. An extension of an inequality of
L.C. Young, Math. Res. Lett. 1(4) (1994), pp. 451-464.

[12] 1. Nourdin and T. Simon, On the absolute continuity of one-dimensional SDEs driven by a
fractional Brownian motion, Statist. Probab. Lett. 76 (2006), pp. 907-912.

[13] D. Nualart, The Malliavin calculus and related topics, 2nd ed., Probability and its Applications
(New York), Springer-Verlag, Berlin, 2006.

[14] D. Nualart and A. Rascanu, Differential equations driven by fractional Brownian motion,
Collect. Math. 53(1) (2002), pp. 55-81.

[15] D. Nualart and B. Saussereau, Malliavin calculus for stochastic differential equations driven by
a fractional Brownian motion, Stochastic Process. Appl. 119(2) (2009), pp. 391-409.

[16] S.G. Samko, A.A. Kilbas, and O.1. Marichev, Fractional Integrals and Derivatives, Gordon
and Breach Science Publishers, Yverdon, 1993.

[17] L.C. Young, An inequality of the Holder type connected with Stieltjes integration, Acta Math.
67 (1936), pp. 251-282.

[18] M. Zihle, Integration with respect to fractal functions and stochastic calculus. I, Probab.
Theor. Relat. Fields 111(3) (1998), pp. 333-374.

[19] X. Zhang, Relatively compact families of functionals on abstract Wiener space and
applications, J. Funct. Anal. 232(1) (2006), pp. 195-221.

Appendix

Proof of Lemma 5

Proof. Although the proof of (19) is classical, for reading convenience we include it. With
Yu) = u?® and p(u) = u™ in Lemma 1.1 of [8], the Garsia—Rodemich—Rumsey
inequality reads as follows:

A A l=sl 74 A\ ©/2
|Bf — B SSJ (—) Hu""'du,

0 u?

where the random variable A is

T (T IBfi’i _ BH,[|2/'s

oJo |t—

Using H — & > 1/2, we have

} _ [t—s]
B — BM| = 848/2A8/2J Hu"™1"dy
0

H _
= 845202 | — |
H—¢

= 84/27%2| — |2,
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We denote &y, = 8 48/2A%/* and for p = 1/g it holds

T (T |gHi _ gH.i|2/® pe
E&f, = 82P4P8[E<J J 1B = BT
0

o r— s

T (T H.i _ pH,i|2p
<= 82p4psT2sz J [ElBt l;sHll dt(is
odo |t —s|"" T

2pe @ )21’ @ .
2p p!

< 8%r4reT - =< (16v2T

Thus (19) and (20) are proved.

The last part of the lemma can be deduced tediously from Theorem 1.3.2 in [7] but
in order to have uniform estimate with respect to H, it seems easier to make the
following direct computations. Let & be such that 8 = H — &. Using (19) and (20), we
have

E (exp(allBH”fg)) =t (eXP(aﬁl B))

=5)

z‘”: aP(16+/2T)%7(2p)!
p—; »)?

I
A

I\

b

and the right-hand side of the above inequality is finite provided that o =< 204872
Anyway in this case it holds that

sup [ (eXp(aIIBH||B)>

Hy=H=1
Applying Young’s inequality implies (21). |

Proof of (41)

For convenience we denote s — ¢(s) := DX, and we restrict ourselves to the case 7 > 0.
We write fora =t =»>b

T
K@)t +h) = Kye)0) = ent + h)”z‘”j PR = = T e
t+h

T
_ cHtl/Z*HJ rH*l/Z(r )H 3/2 (l")dl"
t

and then

|t +h) = (K| = 1i(h) + L(h) + I5(h)



Downloaded by [Bruno Saussereau] at 05:41 09 February 2012

18 B. Saussereau

with

T
NGk = e (1277 =+ h)‘/H)J PR — 1= TP enldr,
t+h

t+h
L(t,h) = cHz‘/H’J V2 — 32 () dr

t

T
I5(t,h) = cHrl/Z*HJ P20 (=t = T — (= "3 () dr
t+h

Let € > 0 be such that e < (H — 1/2) A 1/4. We use the inequality

gl2—H _ (s +h)1/27H = (H — 1/2)}1%1/2}18
€

and the Jensen inequality

b _ 2 b 4 \2H-1
Jlll(t,h)l%us& "=y hZSJtl’ZH’ZS—(T )
" g2 a (H — 1/2)?

T
<J P — h)H3/2|qD(r)|2dr) dr

t+h

2e b T
= crep— tl—2H—23J (r —t — W32 ()| *drde
e

a t+h

2e (T r—h )
= cch,? J 17— 1 — A () Pdr

a+hJa

2e (T r—h 5
= e || P Par,
a+

and the change of variables ¢ = ¢/(r — h) implies that

b
J 112, WI*dt < erc2BQ — 2H — 28:H — 1/2)

a

2e (T
p] (r = W2 o) dr
a+h

Since  supyeq/a B2 —2H —2e;H - 1/2) <o and (r—h)'/*H 2 <14
r1/27H=22 we have

2¢ (T
; J (r = W2 o) dr. (AD)
h

b h
J (e = e

a &€
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Analogously, we have

b ) p2Ha-1 b t+h )
J (1, WIPde = ¢, =17 1/2)2J tHHJ PN = 03 | o(r)Pdrdt
a a t

s p2H-1 b o 1+ o3 )
=crcy;——— |t r—1n" r)| drdt
127 ), J (r = 0/ )]
2H-1 b+h

= CTC%IL
(H—-1/27%),
p2H—1 b+h

|go(r)|2j ' — 32 dedr
r—h
= crc?,—
(H—-1/27),
2H—1

h b+h
2 T 2 1/2—
= I g — a2 T 2 1/2)J le(r)l >~ dr,

|<o(r)|2J 17— 32 qedr
0

and since r1/27H < 1 4 p1/27H=2¢ e deduce that
b , p2H-1 (T .
J |12, )| "dr = CTH—1/2J lp(r) 72 Hdr. (A2)
a 0

Thanks to the inequality s'/27# — (s + h)!/>7# = ((H - 1/2)/8);1%1/2711—8

b ) th b T 2
J 152, 1) dtSCch,?J 1 (J (r—t—h)H3/“|go(r)|dr) dr
a

a t+h
th(T_t_h)Hfl/Zfs b B T 3 B
<= 2" tl 2H _t_hH 3/2—¢ 2d dt
ST 1/2—-¢ L (JH—h(r ) ()l ar
2 71, 2¢e T r—h
cregh 2 1—2H H-3/2—¢
=" t —t—h dr |d
T S)L+h|qo(r)| (J (r—1—h) ) r
2h2BQR—2H;H—1/2—¢8) (T
1y ( / S)J Lo — )2
a+h

e2(H—-1/2—¢)

From xI'(x)—1 as x—0 and (r—)'/27178 < | 4 V2 H e <4 p127H72e e
deduce

2e 1

b T
24, — h 2, 1/2—H—¢
| = e TESyoEr /z—S)ZJ,,""(’)' (=W (A3)

The estimations (A1), (A2) and (A3) imply (41).



