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tribution is quite different from the usual chi-squared approximation used under the
independent and identically distributed assumptions on the noise, or the weighted sum
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tions. A set of Monte Carlo experiments, and an application to the daily returns of the
CAC40 is presented.
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1. Introduction

In 1970, Box and Pierce have proposed (see [4]) a goodness-of-fit test, the so-called port-
manteau test, for univariate strong ARMA models, namely models with an independent and
identically distributed noise sequence. A modification of their test has been proposed by Ljung
and Box (see [13]). It is nowadays one of the most popular diagnostic checking tools in ARMA
modeling of time series. Both of theses tests are based on the residual empirical autocorrela-
tions ρ̂(h). The Box-Pierce statistic is defined by

Qbp
m = n

m∑
h=1

ρ̂2(h), (1)

where n is the length of the series and m is a fixed integer. If the noise sequence is independent
and identically distributed, the standard test procedure consists in rejecting the null hypothesis
of an ARMA(p,q) models if the statistic Qbp

m is greater than a certain quantile of a chi-squared
distribution. We mention that the Ljung-Box statistic defined by

Qlb
m = n(n+ 2)

m∑
h=1

ρ̂2(h)
n− h

. (2)
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has the same asymptotic distribution as QBP
m and has the reputation of doing better for

small or medium sized sample (see [13]). Nowadays, the time series literature has shown a
growing interest in non-linear models. Roughly speaking, these models are those for which the
assumption that the noise is a sequence of independent and identically distributed random
variables is relaxed. A detailed and concise presentation is proposed in the next section.

Henceforth, we deal with some models with uncorrelated but dependent noise process. For
such models, the asymptotic distribution of the Box-Pierce statistic is no more a chi-square
distribution but a mixture of m chi-squared distributions, weighted by eigenvalues of the
asymptotic covariance matrix of the vector of autocorrelations (see [8]).

In this work, we propose an alternative method that do not estimate an asymptotic co-
variance matrix. It is based on a new self-normalization based approach to construct a new
test-statistic that is asymptotically distribution-free under the null hypothesis. The idea comes
from Lobato (see [14]) and has been already used in [16]. Indeed, under some technical con-
dition, Shao has constructed some confidence region for the parameter vector for fractional
autoregressive integrated moving average process. Our new test-statistic is defined by

Qsn
m = n σ̂4 ρ̂′mĈ

−1
m ρ̂m, (3)

where Ĉ−1
m is a normalization matrix that is observable, σ̂2 is the estimator of the common

variance of the noise process and ρ̂m is the vector of the first m sample autocorrelations. We
prove in Theorem 2, that the asymptotic distribution of Qsn

m is the distribution of a random
variable Um that depends only on m and is free of all the parameters of the model. It as
an explicit expression by means of Brownian bridges but its law is not explicitly known.
Nevertheless, it can be easily tabulated by Monte-Carlo experiments (see Table 1 in [14] or
our own table given by Table 1). We emphasize the fact that in [8], the authors have proposed
some modified versions of the Box-Pierce and Ljung-Box statistics that are more difficult to
implement because their critical values have to be computed from the data, whereas those of
our new portmanteau statistics are not computed from the data since they are tabulated. In
some sense, our method is finally closer to the standard versions which are simply given in a
χ2-table.

In Monte Carlo experiments, we illustrate that the proposed test statistics Qsn
m have rea-

sonable finite sample performance, at least for the models considered in our study. Under
nonindependent errors, it appears that the standard test statistics are generally unreliable,
overrejecting severely, while the proposed test statistics offers satisfactory levels in most cases.
Even for independent errors, the proposed versions may be preferable to the standard ones,
when the number m of autocorrelations is small. Moreover, the error of first kind is well
controlled. For all these reasons, we think that the modified versions that we propose in this
paper are preferable to the standard ones for diagnosing ARMA models under nonindependent
errors.

The paper is organised as follows. In the next section, we introduce the model and our
methodology. The main results (Theorem 1 and Theorem 2) are given in Section 3. Their proofs
are postponed to Section 6. Numerical illustrations are presented in Section 4. An application
to the daily returns of the CAC40 is presented in Section 5. The associated numerical tables
are gathered in Section 7, after the bibliography.

We complete this introduction by some basic notations that will be used throughout this
paper. We denote by A′ the transpose of a matrix A. We denote by d−→ and P−→ the convergence
in distribution and in probability, respectively. The symbol oP(1) is used for a sequence of
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random variables that converges to zero in probability. We recall that the Skorokhod space
Dd[0,1] is the set of Rd−valued functions defined on [0,1] which are right continuous and have
left limits. It is endowed with the Skorokhod topology and the weak convergence on Dd[0,1] is

mentioned by Dd−→. We finally denote by bac the integer part of the real a. The identity matrix
of order d is denoted by Id.

2. Model, assumptions and methodology

First, we introduce the notions of weak and strong ARMA representations, which differ by
the assumptions on the error terms. Then we recall some results concerning the estimation of
weak ARMA models and we present the methodology of our test, which is that based on the
self-normalization procedure.

2.1. Strong and weak ARMA representations

In order to deal with quite general linear models, it is usually assumed that the linear innova-
tions, which are uncorrelated by construction, are not independent, nor martingale differences.
Indeed, the Wold decomposition (see Section 5.7 in [5]) stipulates that any zero-mean purely
non deterministic stationary process can be expressed as

Xt =
∞∑
`=0

ϕ` εt−`, (4)

where ϕ0 = 1,
∑∞
l=0 ϕ

2
` < ∞, and the linear innovation process ε := (εt)t∈Z is assumed

to be a stationary sequence of centered and uncorrelated random variables with common
variance σ2. Under the above assumptions, the process ε is called a weak white noise. In
practice the sequence (ϕ`)`≥0 is often parameterized by assuming that the processX = (Xt)t∈Z
admits an ARMA(p, q) representation, i.e. that there exists integers p and q and constants
a1, . . . , ap, b1, . . . , bq, such that for any t ∈ Z

Xt −
p∑
i=1

aiXt−i = εt +
q∑
j=1

bjεt−j . (5)

This representation is said to be a weak ARMA(p, q) representation under the assumption
that ε is a weak white noise. For the statistical inference of ARMA models, the weak white
noise assumption is often replaced by the strong white noise assumption, i.e. the assumption
that ε is an independent and identically distributed (i.i.d. for short) sequence of random
variables with mean 0 and common variance σ2. An intermediate assumption for the noise
when ε is that is a stationary martingale-difference sequence. In such a case, it holds that ε is a
stationary sequence satisfying E (εt | εu, u < t) = 0 and Var(εt) = σ2. An interesting example
of such a noise is the generalized autoregressive conditional heteroscedastic (GARCH) model.
At last, a process (Xt)t∈Z is said to be linear when the sequence ε is i.i.d. in the representation
(4), and is said to be non-linear in the opposite case. With this definition, GARCH-type
processes are considered as non-linear. Linear and non-linear processes may also have exact
weak ARMA representations, and many important classes of nonlinear processes admit weak
ARMA representations (see [8] and the references therein). Obviously the strong white noise
assumption is more restrictive than the weak white noise assumption, because independence
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entails uncorrelatedness. Consequently weak ARMA representations are more general than
the strong ones. We end this general presentation by recalling that any process satisfying (4)
is the limit, in L2 as n tends to ∞, of a sequence of processes satisfying weak ARMA(pn, qn)
representations (see [11] page 244). In this sense, the subclass of the processes admitting weak
ARMA(pn, qn) representations is dense in the set of the purely non deterministic stationary
processes.

2.2. Estimating weak ARMA representations

Now, we present the least square estimation procedure of the parameter of an ARMA model
as well as the asymptotic behavior of the least squares estimator (LSE in short). The LSE
method is the standard estimation procedure for ARMA models and it coincides with the
maximum-likelihood estimator in the Gaussian case. As usual, it will be convenient to write
(5) as

a(L)Xt = b(L)εt,

where L is the backshift operator, a(z) = 1 −
∑p
i=1 aiz

i is the AR polynomial (AR stands
for auto regressive) and b(z) = 1 +

∑q
j=1 bjz

j is the MA polynomial (MA stands for moving
average) . The unknown parameter θ0 = (a1, . . . , ap, b1, . . . , bq)′ is supposed to belong to the
interior of a compact subspace Θ∗ of the following parameter space

Θ :=
{
θ = (θ1, . . . , θp, θp+1, ..., θp+q)′ ∈ Rk0 , k0 := p+ q :

a(z) = 1−
p∑
i=1

aiz
i and b(z) = 1 +

q∑
i=1

biz
i

have all their zeros outside the unit disk
}
.

For a θ ∈ Θ, the polynomial functions a and b have all their zeros outside the unit disk and
we also assume that a and b have no zero in common. As for the usual strong ARMA models,
it is assumed that p+ q > 0 and a2

p + b2q 6= 0 (by convention a0 = b0 = 1).
For all θ ∈ Θ, let

εt(θ) = b−1(L)a(L)Xt = Xt +
∞∑
i=1

ci(θ)Xt−i.

Note that for any t ∈ Z, εt(θ0) = εt almost-surely. Given a realization X1, X2, . . . , Xn of length
n, εt(θ) can be approximated, for 0 < t ≤ n, by et(θ) which is defined recursively by

et(θ) = Xt −
p∑
i=1

θiXt−i −
q∑
i=1

θp+iet−i(θ) (6)

where the unknown starting values are set to zero:

e0(θ) = e−1(θ) = · · · = e−q+1(θ) = X0 = X−1 = · · · = X−p+1 = 0 .

The random variable θ̂n is called LSE if it satisfies, almost surely,

Qn(θ̂n) = min
θ∈Θ∗

Qn(θ), with

Qn(θ) =
1

2n

n∑
t=1

e2
t (θ). (7)
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In order to state our results, we shall need the functions

On(θ) =
1

2n

n∑
t=1

ε2t (θ). (8)

As in [9], we shall work with a noise that will have the strong mixing property. We recall that
the strong mixing coefficients of a stationary process Z = (Zt)t∈T (here T denotes the set of
indices of the process Z that may be R, Z or any subset of these sets) are defined by

αZ(h) = sup
A∈σ(Zu,u≤t),B∈σ(Xu,u≥t+h)

|P(A ∩B)− P(A)P(B)| .

For a given h, αZ(h) is measuring the temporal dependence of the process Z at time lag h. The
asymptotic behavior of the LSE is well known in the strong ARMA case. This assumption being
very restrictive, a weak ARMA representation of stationary processes satisfying E(|Xt|4+2ν) <
∞ and

∑∞
k=0 {αX(k)}

ν
2+ν < ∞ for some ν > 0, has been considered in [9]. Hereafter, it has

been noted in [11] that the strong mixing and the moments conditions on the process X can
be replaced by the following ones on the noise process ε:

(A1) : E
(
|εt|4+2ν) <∞ and

∞∑
k=0

{αε(k)}
ν

2+ν <∞ for some ν > 0 ; (9)

(A2) : ε is ergodic and stationnary. (10)

Note that assumption (A1) does not require independence of the noise, nor the fact that it is
a martingale difference. The above hypotheses will be assumed in all our work.

In [9], it is proved that if (Xt)t∈Z is a strictly stationary and ergodic process satisfying the
ARMA model (5) with a weak white noise ε, then under the Assumption A1, it holds that θ̂n
is a consistent estimator of θ0 and

√
n
(
θ̂n − θ0

)
d−−−→

n→∞
N (0,V(θ0)), (11)

where V(θ0) = J(θ0)−1I(θ0)J(θ0)−1, with

I(θ) = lim
n→∞

Var
(√

n
∂

∂θ
Qn(θ)

)
and

J(θ) = lim
n→∞

∂2Qn(θ)
∂θ∂θ′

a.s.. (12)

The matrix J can easily be estimated by its empirical counterpart (see Theorem 2 in [10])

Ĵn =
1
n

n∑
t=1

∂et(θ̂n)
∂θ

∂et(θ̂n)
∂θ′

(13)

because we have (see the proof of Lemma A4 in [10])

J(θ0) = E
[
∂εt(θ0)
∂θ

∂εt(θ0)
∂θ′

]
(14)

Some details on this estimation will be given hereafter. The matrices J(θ) and I(θ) are usually
called information matrices. They are involved in the inference steps, such as in portmanteau
adequacy tests (see [8]).
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2.3. Methodology of test

As mentioned in the introduction, the goodness-of-fit test are based on the residual autocor-
relations. We introduce further notations to explain our strategy.

For a time t ≥ 0, let êt = et(θ̂n) be the least-square residuals when p > 0 or q > 0, and let
êt = et = Xt when p = q = 0. When p + q 6= 0, we use (6) to notice that we have êt = 0 for
t ≤ 0 and t > n. By (5), it holds that

êt = Xt −
p∑
i=1

θ̂i X̂t−i +
q∑
i=1

θ̂p+i êt−i, (15)

for t = 1, . . . , n, with X̂t = 0 for t ≤ 0 and X̂t = Xt for t ≥ 1.
We denote

γ(h) =
1
n

n∑
t=h+1

εt εt−h

the white noise "empirical" autocovariances. It should be noted that γ(h) is not a statistic
(unless if p = q = 0) because it depends on the unobserved innovations ε. The residual
autocovariances are defined by

γ̂(h) =
1
n

n∑
t=h+1

êt êt−h.

It is worth to notice that the residual autocovariances are observable. For a fixed integer
m ≥ 1, we denote

γm = (γ(1), . . . , γ(m))′ and γ̂m = (γ̂(1), . . . , γ̂(m))′ .

The theoretical and sample autocorrelations at lag ` are respectively defined by ρ(`) =
γ(`)/γ(0) and ρ̂(`) = γ̂(`)/γ̂(0), with γ(0) := σ2. In the sequel, we will also need the vector
of the first m sample autocorrelations

ρ̂m = (ρ̂(1), . . . , ρ̂(m))′ .

Based on the residual empirical autocorrelations ρ̂(h), the Box-Pierce statistic is defined in
(1) and is used to test the null hypothesis

(H0) : (Xt)t∈Z satisfies an ARMA(p, q) representation;

against the alternative

(H1) : (Xt)t∈Z does not admit an ARMA(p, q) representation or (Xt)t∈Z satisfies an ARMA(p′, q′)
representation with p′ > p or q′ > q.

These tests are very useful tools for checking the overall significance of the residual autocorre-
lations. Under the assumption that the data generating process follows a strong ARMA(p, q)
model, the asymptotic distribution of the statistic Qbp

m is generally approximated by the χ2
m−k0

distribution with m > k0.
The main objective is to investigate the asymptotic behaviour of the law of Qsn

m , or a
modification of it. It is obvious that this task will be a consequence of the study of the limit
of the vector γ̂m.
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2.4. Self-normalization

When the noise process in (5) is not independent, it has been shown in [8] that the asymptotic
covariance matrix of the sample autocorrelations depends on the data generation process and
the unknown parameters. To derive the asymptotic distribution of the portmanteau statistics
under weak assumptions on the noise, one needs a consistent estimator of the asymptotic
covariance matrix Σρ̂m of a vector of autocorrelations for residuals. In the econometric litera-
ture the nonparametric kernel estimator, also called heteroscedastic autocorrelation consistent
estimator (see [1, 15]), is widely used to estimate covariance matrices. However, this causes
serious difficulties as regard to the choice of the sequence of weights. An alternative method
consists in using a parametric autoregressive estimate of the spectral density of a stationary
process. This approach, which has been studied in [2, 7], is also confronted to the problem of
choosing the truncation parameter. Indeed, this method is based on an infinite autoregressive
representation of the stationary process. So the choice of the order of truncation is crucial and
difficult. The methodology employed in [8] is, to our knowledge, the only work that deals with
goodness-of-fit tests for weak ARMA models (an extension is proposed in [3] for multivariate
ARMA models). Nevertheless, their method presents both difficulties that we just discussed: it
supposes to weight appropriately some empirical fourth-order moments by means of a window
and a truncation point. To circumvent the problem, we propose to adopt a self-normalization
approach as in [14] and [16].

The self-normalization procedure is very well described in Section 2 of the paper of Lobato
(see [14]). We also refer to [16] (Section 2.1). It has the outstanding advantage to be free of
nuisance parameters such as the choice of the bandwidth in the truncation or the order of the
truncation. We present here the main difficulties and differences that appear in our framework.
More precisely, it will arise, after some quite technical considerations, that if we denote Γ the
matrix in Rm×(p+q+m) defined in block formed by

Γ =
(
− ΦmJ

−1|Im
)
, (16)

where J is defined in (12) and Φm is defined by

Φm = E


 εt−1

...
εt−m

 ∂εt(θ0)
∂θ′

 , (17)

then one may write

√
n γ̂m =

1√
n

ΓUt + oP(1),

with

Ut =
(
−εt(θ0)

∂εt(θ0)
∂θ

, εtεt−1, ..., εtεt−m

)′
. (18)

The above expression comes from (44) in Section 6. At this stage, we do not rely on the
classical method that would consist in estimating the asymptotic covariance matrix of ΓUt.
We rather try to apply Lemma 1 in [14]. So we need to check that a functional central limit
theorem holds for the process U := (Ut)t≥1.
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If there were no first entry of Ut, we would be in the context of Lobato and the functional
central limit theorem would be clear thanks to the mixing condition on the noise process ε.
Unfortunately, it is more difficult to deal with the process U itself. In order to prove that

1√
n

∑bnrc
j=1 ΓUj converges on the Skorokhod space to a Brownian motion, we will employ a

cutoff argument on the representation of ∂εt(θ0)/∂θ as an infinite sum of the past of the noise
(see (38) for precisions). This difficulty is overcome in the proof of Theorem 1 (see Subsection
6.2.2).

We are now able to state the following theorems, which are the main results of our work.

3. Main results

We begin by introducing further notations. Let (Bm(r))r≥0 be a m-dimensional Brownian
motion starting from 0. For m ≥ 1, we denote Um the random variable defined by

Um = B′m(1)V −1
m Bm(1) (19)

where

Vm =
∫ 1

0
(Bm(r)− rBm(1)) (Bm(r)− rBm(1))′ dr. (20)

The critical values for Um have been tabulated by Lobato in [14]. We have produce our own
table (see Table 1 in Section 7).

Finally, we denote

St =
1
n

t∑
j=1

Γ

(
Uj −

1
n

n∑
i=1

Ui

)
(21)

where the process U is defined by (18).
The following theorem states the asymptotic distribution of the sample autocovariances and

autocorrelations.

Theorem 1. Assume that p > 0 or q > 0. Under assumptions (A1) and (A2), we have

n γ̂′mC
−1
m γ̂m

d−−−→
n→∞

Um (22)

where the normalization matrix Cm ∈ Rm×m is defined by

Cm =
1
n2

n∑
t=1

StS
′
t. (23)

The sample autocorrelations satisfy

nσ4 ρ̂′mC
−1
m ρ̂m

d−−−→
n→∞

Um (24)

The proof of this result is postponed to Section 6.
Of course, the above theorem is useless for practical purpose, because it does not involve any

observable quantities. This gap will be fixed hereafter. Right now, we make several important
comments that are necessary to compare Theorem 1 with the existing results.
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Remark 1. When p = q = 0, we do no more need to estimate the unknown parameter θ0.
Thus a careful reading of the proofs shows that the vector Ut is replaced by

Ũt = (εtεt−1, ..., εtεt−m)′

and Γ is replaced by the identity matrix. Then we obtain the result of Lobato (see Lemma 1 in
[14]) and we thus generalized his result to the ARMA model.

Remark 2. In [16], the author has proposed a self-normalization approach to the construction
of confidence regions for the parameter vector θ. The unknown parameter is estimated by the
Whittle estimator, but this difference is not significant. The striking difference consists in the
lists of assumptions that the author has used. Even if they are natural, they are quite strong
(especially the 8th moment condition) whereas our work only supposes that assumption (A1),
on the moments, is satisfied. Moreover, it is not clear to us that, in the framework of [16], a
goodness-of-fit test can be obtained.

As mentioned before, the above theorem has to be completed. To make it useful in practice,
one has to replace the matrix Cm and the variance of the noise σ2 by their empirical or
observable counterparts. For Cm, the idea is to use et(θ̂n) instead of the unobservable noise
εt(θ0). The matrix Φm can be easily estimated by its empirical counterpart

Φ̂m =
1
n

n∑
t=1

{
(êt−1, . . . , êt−m)′

∂et(θ)
∂θ′

}
θ=θ̂n

. (25)

The matrix J is estimated by Ĵn defined in (13). Thus we define

Γ̂ =
(
− 2Φ̂mĴ

−1
n |Im

)
. (26)

Finally we denote

Ût =
(
−êt

∂et(θ)
∂θ

, êtêt−1, ..., êtêt−m

)′ ∣∣∣∣∣
θ=θ̂n

and (27)

Ŝt =
1
n

t∑
j=1

Γ̂

(
Ûj −

1
n

n∑
i=1

Ûi

)
. (28)

The above quantities are all observable and we are able state our second theorem which is the
applicable counterpart of Theorem 1.

Theorem 2. Assume that p > 0 or q > 0. Under the assumptions (A1) and (A2), we have

n γ̂′mĈ
−1
m γ̂m

d−−−→
n→∞

Um (29)

where the normalization matrix Ĉm ∈ Rm×m is defined by

Ĉm =
1
n2

n∑
t=1

ŜtŜ
′
t. (30)

The sample autocorrelations satisfy

Qsn
m = n σ̂4 ρ̂′mĈ

−1
m ρ̂m

d−−−→
n→∞

Um, (31)

where σ̂2 is a consistent estimator of the common variance of the noise process ε.
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The proof of this result is postponed to Section 6.
Based on the above result, we propose a modified version of the Ljung-Box statistic when

one uses the statistic
Q̃sn
m = n(n+ 2) σ̂4 ρ̂′mDn,mĈ

−1
m ρ̂m

where the matrix Dn,m is diagonal with (1/(n− 1), ..., 1/(n−m)) as diagonal terms.

Remark 3. In [8], the authors proposed some modified versions of the Box-Pierce and Ljung-
Box statistics that are more difficult to implement because their critical values have to be
computed from the data, whereas those of our new portmanteau statistics are tabulated once
for all. In some sense, our methods is finally closer to the standard versions who are simply
given in a χ2-table.

4. Numerical illustrations

In this section, by means of Monte Carlo experiments, we investigate the finite sample proper-
ties of the modified version of the portmanteau tests introduced in this paper. The numerical
illustrations of this section are made with the free statistical software R (see http://cran.r-
project.org/). The tables are gathered in Section 7.

We indicate the conventions that we adopt in the discussion and in the tables. One refers
to

• BPS for the standard Box-Pierce test using the statistic Qbp
m ;

• LBS for the standard Ljung-Box test using the statistic Qlb
m ;

• BPLo
sn for the modified test using the statistic Qsn

m with the values of the quantiles of Um
simulated in Table 1 of [14];
• BPsn for the modified test using the statistic Qsn

m with the values of the quantiles of Um
that we have simulated in Table 1;
• LBsn for the modified test using the statistic Q̃sn

m with the values of the quantiles of Um
that we have simulated in Table 1;
• BPfrz for the standard Ljung-Box test using the statistic Qbp

m and the method presented
in [8];
• LBfrz for the standard Box-Pierce test using the statistic Qbp

m and the method presented
in [8].

As an example, the p−value of the test BPsn is denoted by pbp
sn . We adopt similar notations

for the other tests.
We will see in the tables that the numerical results using the Ljung-Box tests are very close

to those of the Box-Pierce tests. Nevertheless, they are still presented here, for the sake of
completeness.

4.1. Simulated models

To generate the strong and the weak ARMA models, we consider the following ARMA(1, 1)-
ARCH(1) model

Xt = aXt−1 + εt + bεt−1, (32)

with εt = ηt(1 + α1ε
2
t−1)1/2 and (ηt)t≥1 a sequence of independent and identically distributed

standard Gaussian random variable.
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4.2. Empirical size

We simulated N = 1, 000 independent trajectories of different size of model (32) with different
values of the parameters θ0 = (a, b)′ and α1. For each of these N replications, we estimated
the coefficient θ0 and we applied portmanteau tests to the residuals for different values of m,
wherem is the number of autocorrelations used in the portmanteau test statistic. The nominal
asymptotic level of the tests is α = 5%.

4.2.1. Strong ARMA model case

To generate the strong ARMA model, we assume that α1 = 0 in (32). We first simulated
N independent trajectories of size n = 100, n = 300 and n = 1, 000 with the parameter
θ0 = (0, 0)′ (see Table 2). Secondly, we simulated N independent trajectories of size n = 500
and n = 1, 000 with the parameter θ0 = (0.95,−0.6)′ (see Table 3). For the standard Box-
Pierce test, the model is therefore rejected when the statistic Qbp

m is greater than χ2
(m−2)(0.95).

We know that the asymptotic level of this test is indeed α = 5% when θ0 = (0, 0)′. Note
however that, even when the noise is strong, the asymptotic level is not exactly α = 5% when
θ0 6= (0, 0).

For the modified Box-Pierce test (BPsn), the model is rejected when the statistic Qsn
m is

greater than Um(0.95), where the critical values Um(0.95) are tabuled in Lobato (see Table 1
in [14] or our own table given by Table 1). When the roots of (1−az)(1− bz) = 0 are near the
unit disk, the asymptotic distribution of Qsn

m is likely to be far from its χ2
(m−2) approximation.

Table 2 displays the relative rejection frequencies of the null hypothesis H0 that the data
generating process follows a ARMA(0, 0), over the N independent replications. As expected
the observed relative rejection frequencies of the standard and modified Box-Pierce tests are
close from the nominal α = 5%. Table 3 displays the relative rejection frequencies of the null
hypothesis H0 that the data generating process follows a ARMA(1, 1), with the parameter
θ0 = (0.95,−0.6)′, over the N independent replications. As expected the observed relative
rejection frequency of the standard Box-Pierce test is very far from the nominal α = 5%
when the number m of autocorrelations used in the statistic is small. This is in accordance
with the results in the literature on the standard ARMA models. The theory that the χ2

(m−2)
approximation is better for larger m is confirmed. In contrast, our modified Box-Pierce test
well controls the error of first kind, even when m is small. Note that, for large n, when m
is large the results are very similar for the standard and modified BP tests. Contrary to the
standard test, the test based on Qsn

m can be used safely for m small. Note that for m ≤ 2,
the empirical size is not available (n.a.) for the standard Box-Pierce test because this test is
not applicable to m ≤ p + q. From this example we draw the conclusion that, even in the
strong ARMA case (with coefficients far from zero), the modified version is preferable to the
standard one, when the number m of autocorrelations used is small.

4.2.2. Weak ARMA model case

We now repeat the same experiment on model (32) by assuming that α1 = 0.4 (i.e. a weak
ARMA(1, 1) model). We first simulated N independent trajectories, of this model, of size
n = 300 and n = 1, 000 with the parameter θ0 = (0, 0)′. Secondly, we simulated N independent
trajectories of size n = 1, 000 and n = 2, 000 with the parameter θ0 = (0.95,−0.6)′.
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As expected, Tables 4 and 5 show that the standard Box-Pierce test poorly performs to
assess the adequacy of this weak ARMA models. In view of the observed relative rejection
frequency, the standard test rejects very often the true ARMA(0, 0) or ARMA(1, 1) and all
the relative rejection frequencies are very far from the nominal α = 5%. By contrast, the error
of first kind is well controlled by the modified version of the BP test. We draw the conclusion
that, for this particular weak ARMA model, the modified version is clearly preferable to the
standard one.

4.3. Empirical power

In this part, we simulatedN = 1, 000 independent trajectories of different size of a ARMA(2, 1)
defined by

Xt = Xt−1 − 0.2Xt−2 + εt + 0.8εt−1, (33)
(34)

where εt = ηt(1 +α1ε
2
t−1)1/2 and (ηt)t≥1 is again a sequence of iid standard Gaussian random

variables.
For each of these N = 1, 000 replications we fitted a ARMA(1, 1) model and perform stan-

dard and modified Box-Pierce test based on m = 1, 2, 3, 4, 6 and 10 residual autocorrelations.
The adequacy of the ARMA(1, 1) model is rejected, in the strong and the weak ARMA cases,
when the standard statistic Qbp

m is greater than χ2
(m−2)(0.95) and when the proposed statistic

Qsn
m is greater than Um(0.95).
Tables 6 and 7 display the relative rejection frequencies of over the N = 1, 000 independent

replications. Table 6 shows that the powers of all the standard tests are very greater than the
modified tests in the strong ARMA model. This is not surprising, because we have seen that,
even in the strong ARMA case, the actual level of the standard version is generally much
greater than the 5% nominal level, when the number m of autocorrelations used is small (see
Table 3). By contrast, Table 7 shows that the powers of the modified tests are very similar in
the weak ARMA case. The empirical powers of the standard tests are hardly interpretable for
this weak ARMA model, because we have already seen in Table 5 that the standard versions of
the tests do not well control the error of first kind in this particular weak ARMA framework.

5. Illustrative example

We now consider an application to the daily returns of the CAC40. The observations cover
the period from the starting date of CAC40 to July 26, 2010. The length of the series is n =
5154. In Financial Econometrics, the returns are often assumed to be martingale increments
(though they are not generally independent sequences), and the squares of the returns have
often second-order moments close to those of an ARMA(1,1) (which is compatible with a
GARCH(1,1) model for the returns). We will test these hypotheses by fitting weak ARMA
models on the returns and on their squares.

First, we apply portmanteau tests for checking the hypothesis that the CAC40 returns
constitute a white noise. Table 8 displays the statistics of the standard and modified BP tests.

Since the p-values of the standard test are very small, the white noise hypothesis is rejected
at the nominal level α = 5%. This is not surprising because the standard tests required the
iid assumption and, in particular in view of the so-called volatility clustering, it is well known
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that the strong white noise model is not adequate for these series. By contrast, the white noise
hypothesis is not rejected by the modified tests, since for the modified tests, the statistic is
not greater than the critical values (see Table 1). To summarize, the outputs of Table 8 are
in accordance with the common belief that these series are not strong white noises, but could
be weak white noises.

Next, turning to the dynamics of the squared returns, we fit an ARMA(1, 1) model to the
squares of the CAC40 returns. Denoting by (Xt) the mean corrected series of the squared
returns, we obtain the model

Xt = 0.98262Xt−1 + εt − 0.89978εt−1, where Var(εt) = 26.66141× 10−8.

Table 9 displays the statistics of the standard and modified BP tests. From Table 9, we draw
the same conclusion, on the squares of the previous daily returns, that the strong ARMA(1, 1)
model is rejected, but a weak ARMA(1, 1) model is not rejected. Note that the first and
second-order structures we found for the CAC40 returns, namely a weak white noise for the
returns and a weak ARMA(1, 1) model for the squares of the returns, are compatible with a
GARCH(1, 1) model.

6. Proofs

First, we shall need some technical results which are essentially contained in [8, 9, 10]. They
are essential to understand the proof, but were not necessary to give the main ideas of the
self-normalization approach. This is the reason why these facts are presented here.

6.1. Reminder on technical issues on quasi likelihood method for ARMA models

We recall that, given a realization X1, ..., Xn of length n, the noise εt(θ) is approximated by
et(θ) which is defined in (6).

The starting point in the asymptotic analysis, is the property that εt(θ) − et(θ) converges
uniformly to 0 (almost-surely) as t goes to infinity. Similar properties also holds for the deriva-
tives with respect to θ of εt(θ) − et(θ). We sum up the fact that we shall need in the sequel.
We refer to the appendix of [10] (see also [9]) for a more detailed treatment.

For any θ ∈ Θ and any (l,m) ∈ {1, ..., p + q}2, there exists absolutely summable and
deterministic sequences (ci(θ))i≥0, (ci,l(θ))i≥1 and (ci,l,m(θ))i≥1 such that, almost surely,

εt(θ) =
∞∑
i=0

ci(θ)Xt−i ,
∂εt(θ)
∂θl

=
∞∑
i=1

ci,l(θ)Xt−i and
∂2εt(θ)
∂θl∂θm

=
∞∑
i=2

ci,l,m(θ)Xt−i (35)

et(θ) =
t−1∑
i=0

ci(θ)Xt−i ,
∂et(θ)
∂θl

=
t−1∑
i=1

ci,l(θ)Xt−i and
∂2et(θ)
∂θl∂θm

=
t−1∑
i=2

ci,l,m(θ)Xt−i. (36)

We strength the fact that, in the above identities, c0(θ) = 1.
A useful property of the sequences c, is that they are asymptotically exponentially small.

Indeed, there exists ρ ∈ [0,1[ such that, for all i ≥ 1,

sup
θ∈Θ∗

(
|ci(θ)|+ |ci,l(θ)|+ |ci,l,m(θ)|

)
≤ K ρi , (37)

where K is a positive constant.
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From (5), this implies that there exists some other absolutely summable and deterministic
sequences (di(θ))i≥0, (di,l(θ))i≥1 and (di,l,m(θ))i≥1 such that, almost surely,

εt(θ) =
∞∑
i=0

di(θ)εt−i ,
∂εt(θ)
∂θl

=
∞∑
i=1

di,l(θ)εt−i and
∂2εt(θ)
∂θl∂θm

=
∞∑
i=2

di,l,m(θ)εt−i (38)

et(θ) =
t−1∑
i=0

di(θ)et−i ,
∂et(θ)
∂θl

=
t−1∑
i=1

di,l(θ)et−i and
∂2et(θ)
∂θl∂θm

=
t−1∑
i=2

di,l,m(θ)et−i. (39)

Again, we have d0(θ) = 1 and the three above sequences also satisfy

sup
θ∈Θ∗

(
|di(θ)|+ |di,l(θ)|+ |di,l,m(θ)|

)
≤ K ρi . (40)

Finally, from the above estimates, we are able to deduce that for any (l,m) ∈ {1, ..., p+q}2,
it holds

sup
θ∈Θ∗

|εt(θ)− et(θ)|
a.s.−−−→
t→∞

0 , (41)

ρt sup
θ∈Θ∗

|εt(θ)|
a.s.−−−→
t→∞

0 . (42)

Analogous estimates to (41) and (42) are satisfied for first and second order derivatives of εt
and et.

This implies that the sequences
√
n ∂
∂θQn(θ0) and

√
n ∂
∂θOn(θ0) have the same asymptotic

distribution. More precisely, we have

√
n

(
∂

∂θ
Qn(θ0)− ∂

∂θ
On(θ0)

)
= oP(1) . (43)

6.2. Proof of Theorem 1

The proof is divided in several steps.

6.2.1. Taylor’s expansion of γ̂m

The aim of this step is to prove that

√
n γ̂m =

1√
n

Γ Ut + oP(1). (44)

Let h ∈ {1, ...,m}. We apply the mean value theorem to the function

θ 7→ (1/n)
n∑

t=h+1

εt(θ) εt−h(θ)

between the points θ0 and θ̂n. Thus there exists θ∗n between θ0 and θ̂n such that

1
n

n∑
t=h+1

εt(θ̂n) εt−h(θ̂n) = γ(h) +
1
n

n∑
t=h+1

Dt(θ∗n) (θ̂n − θ0)
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where the function Dt is defined on Θ by

Dt(θ) =
∂εt(θ)
∂θ

εt−h(θ) + εt(θ)
∂εt−h(θ)
∂θ′

.

Therefore,

γ̂(h) =
1
n

n∑
t=h+1

et(θ̂n) et−h(θ̂n)

= γ(h) + E
(
Dt(θ0)

)
(θ̂n − θ0) +Rn , (45)

where Rn = R1
n +R2

n +R3
n with

R1
n =

1
n

n∑
t=h+1

{
et(θ̂n) et−h(θ̂n)− εt(θ̂n) εt−h(θ̂n)

}

R2
n =

 1
n

n∑
t=h+1

(
Dt(θ∗n)−Dt(θ0)

) (θ̂n − θ0)

R3
n =

 1
n

n∑
t=h+1

Dt(θ0)− E
(
Dt(θ0)

) (θ̂n − θ0) .

We recall that limn→∞ θn = θ0. Then, using (35) to (42), combined with the arguments of
Lemma A3 in [10], one has limn→∞Rn = 0 almost-surely. By (35), one may find an absolutely
summable and deterministic sequence (d̃i(θ))i≥1 such that ∂εt−h(θ0)/∂θ′ =

∑∞
i=1 d̃i(θ)εt−h−i(θ).

Hence ∂εt−h(θ0)/∂θ′ is not correlated with εt when h ≥ 0. Consequently,

E
(
Dt(θ0)

)
= E

(
∂εt(θ0)
∂θ′

εt−h(θ0)
)

:= φh ∈ Rp+q

and (45) becomes

γ̂(h) = γ(h) + φh (θ̂n − θ0) + oP(1). (46)

Now we use the Taylor expansion of the derivative of Qn which is defined in (7). This
classical argument uses the fact that ∂Qn(θ̂n)/∂θ = 0, because θ̂n minimizes the function
θ 7→ Qn(θ) (see the proof of Theorem 2 in [9]). Therefore there exists θ] is between θ0 and θ̂n
such that

0 =
√
n
∂Qn(θ̂n)
∂θ

=
√
n
∂Qn(θ0)
∂θ

+
∂2Qn(θ])
∂θ∂θ′

√
n
(
θ̂n − θ0

)
=
√
n
∂On(θ0)
∂θ

+
∂2On(θ0)
∂θ∂θ′

√
n
(
θ̂n − θ0

)
+R4

n (47)

with

R4
n =
√
n

(
∂Qn(θ0)
∂θ

− ∂On(θ0)
∂θ

)
+

(
∂2Qn(θ])
∂θ∂θ′

− ∂2On(θ0)
∂θ∂θ′

)
√
n
(
θ̂n − θ0

)
.
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The first therm of R4
n converges in probability to 0 by (43). The last term of R4

n tends to 0
almost-surely by the same arguments used in the proof of Theorem 2 in [9]. Consequently,
R4
n = oP(1).
By the definition of the matrix J (see (12)), we get from (47) that

θ̂n − θ0 = −J−1∂On(θ0)
∂θ

+ oP(1) = −J−1 1
n

n∑
t=1

Yt + oP(1)

where

Yt = −εt(θ0)
∂εt(θ0)
∂θ

. (48)

Thus we may rewrite (46) as

γ̂(h) = γ(h)− 1
n
φh J−1

n∑
t=1

Yt + oP(1)

=
1
n

n∑
t=h+1

εt εt−h − (φh J−1)
1
n

n∑
t=1

Yt + oP(1). (49)

Now, we come back to the vector γ̂m = (γ̂(1), ..., γ̂(m))′. We remark that the matrix Φm

defined by (17) is the matrix in Rm×(p+q) whose line h is φh. By (48) and (49), we obtain

√
n γ̂m =

1√
n

Γ

 n∑
t=1

Yt,
n∑

t=1+1

εtεt−1,...,
n∑

t=m+1

εtεt−m

′ + oP(1). (50)

Therefore, the above Taylor’s expansion (44) of γ̂m is proved. This ends our first step.
Now, it is clear that the asymptotic behaviour of γ̂m is related to the limit distribution of

Ut = (Yt, εtεt−1, ..., εtεt−m)′. The next step deals with the asymptotic distribution of ΓUt.

6.2.2. Functional central limit theorem for (ΓUt)t∈Z

Our purpose is to prove that there exists a lower triangular matrix Ψ, with nonnegative
diagonal entries, such that

1√
n

bnrc∑
j=1

ΓUj
Dm−−−→
n→∞

ΨBm(r) (51)

where (Bm(r))r≥0 is a m-dimensional standard Brownian motion.
By (38), one rewrites Ut as

Ut =

 n∑
t=1

∞∑
i=1

di(θ)εtεt−i,
n∑

t=1+1

εtεt−1,...,
n∑

t=m+1

εtεt−m

′

and thus it has zero expectation with values in Rk0+m. In order to apply the function central
limit theorem for strongly mixing process, one has to introduce, for any integer k, the random
variables

Ukt =

 n∑
t=1

k∑
i=1

di(θ)εtεt−i,
n∑

t=1+1

εtεt−1,...,
n∑

t=m+1

εtεt−m

′ . (52)
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Since Uk depends on a finite number of values of the noise-process ε, it satisfies a mixing
property of the form (9). Using this truncation procedure, one may prove as in [9] that

1√
n

n∑
t=1

Ut
d−−−→

n→∞
N (0,Ξ)

where

Ξ := 2πfU (0) =
+∞∑

h=−∞
Cov(Ut, Ut−h) =

+∞∑
h=−∞

E(UtU ′t−h), (53)

where fU (0) is the spectral density of the stationary process (Ut)t∈Z evaluated at frequency 0
(see for example [5]). The main issue is the existence of the sum of the right-hand side of (53).
It is ensured by the Davydov inequality (see [6]) and the arguments developed in the Lemma
A.1 in [8] (se also [9]). Since the matrix Ξ is positive definite, it can be factorized as Ξ = ΥΥ′

where the (k0 + m) × (k0 + m) lower triangular matrix Υ has nonnegative diagonal entries.
Therefore, we have

1√
n

n∑
t=1

ΓUt
d−−−→

n→∞
N (0,ΓΞΓ′),

and the new variance matrix can also been factorized as ΓΞΓ′ = (ΓΥ)(ΓΥ)′ := ΨΨ′. Thus,
n−1/2∑n

t=1 Ψ−1ΓUt
d−−−→

n→∞
N (0, Im) where Im is the identity matrix of order m. The above

arguments also apply to the sequence Uk. There exists a sequence of matrix (Ξk)k≥1, such
that limk→∞ Ξk = Ξ. Some matrix Ψk are defined analogously as Ψ. Consequently,

1√
n

n∑
t=1

ΓUkt
d−−−→

n→∞
N (0,ΓΞkΓ′).

Using [12], the functional central limit theorem also holds: for any r ∈ (0,1),

1√
n

bnrc∑
j=1

Ψ−1
k ΓUkj

Dm−−−→
n→∞

Bm(r).

We write
Ψ−1ΓUkj =

(
Ψ−1 −Ψ−1

k

)
ΓUkj + ΓΨ−1

k ΓUkj

and we obtain that

1√
n

bnrc∑
j=1

Ψ−1ΓUkj
Dm−−−→
n→∞

Bm(r). (54)

In order to conclude that (51) is true, it remains to observe that, uniformly with respect to n,

Zkn(r) :=
1√
n

bnrc∑
j=1

Ψ−1ΓV k
j

Dm−−−→
k→∞

0, (55)

where

V k
t =

 n∑
t=1

∞∑
i=k+1

di(θ)εtεt−i,
n∑

t=1+1

εtεt−1,...,
n∑

t=m+1

εtεt−m

′ .
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By Lemma 4 in [9],

sup
n

VAR

 1√
n

n∑
j=1

V k
j

 −−−→
k→∞

0

and since bnrc ≤ n,
sup

0≤r≤1
sup
n

(
|Zkn(r)|

)
−−−→
k→∞

0.

Thus (55) is true. We additionally use (54) to conclude that (51) is true.

6.2.3. Limit theorem

We prove Theorem 1. We follow the arguments developed in the Sections 2 and 3 in [14].
The main difference is that we shall work with the sequence (ΓUt)t≥1 instead of the sequence(
(εtεt−1, ..., εtεt−m)′

)
t≥1

. The previous step ensures us that Assumption 1 in [14] is satisfied
for the sequence (ΓUt)t≥1. Since Cm = (1/n2)

∑n
t=1 StS

′
t, the continuous mapping theorem on

the Skorokhod space implies that

Cm
d−−−→

n→∞
ΨVmΨ′, (56)

where the random variable Vm is defined in (20). Since by (50),
√
nγ̂n = n−1/2∑n

t=1 ΓUt+oP(1),
we use (51) and (56) in order to obtain

nγ̂′mC
−1
m γ̂m =

1
n

n∑
t=1

(
(ΓUt)′C−1

m (ΓUt)
)

d−−−→
n→∞

(ΨBm(1))′
(
ΨVmΨ′

)−1 (ΨBm(1)) = B′m(1)V −1
m Bm(1),

and we recognize the random variable Um defined in (19). Consequently we have proved (22).
The property (24) is straightforward since ρ̂(h) = γ̂(h)/σ2 for h = 1, ...,m. The proof of
Theorem 1 is then complete.

6.3. Proof of Theorem 2

We write Ĉm = Cm + Υn where

Υn =
1
n2

n∑
t=1

(
StS

′
t − ŜtŜ′t

)
.

There are three kinds of entries in the matrix Υn. The first one is a sum composed of

υk,k
′

t = ε2t (θ0)εt−k(θ0)εt−k′(θ0)− e2
t (θ̂n)et−k(θ̂n)et−k′(θ̂n)

for (k, k′) ∈ {1, ...,m}2. By (40) and the consistency of θ̂n, we have υ
k,k′

t = o(1) almost-surely.
The two last kinds of entries of Υn come from the following quantities

υ̃k,k
′

t = ε2t (θ0)εt−k′(θ0)
∂εt−k(θ0)

∂θ
− e2

t (θ̂n)et−k′(θ̂n)
∂et−k(θ)
∂θ

∣∣∣∣∣
θ=θ̂n

ῡk,k
′

t = εt−k(θ0)εt−k′(θ0)
∂εt−k(θ0)

∂θ

∂εt−k′(θ0)
∂θ

− et−k(θ̂n)et−k′(θ̂n)
∂et−k(θ)
∂θ

∣∣∣∣∣
θ=θ̂n

∂et−k′(θ)
∂θ

∣∣∣∣∣
θ=θ̂n
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and they also satisfy υk,k
′

t + ῡk,k
′

t = o(1) almost-surely. Consequently, Υn = o(1) almost-
surely as n goes to infinity. Thus one may find a matrix Υ∗n, that tends to the null matrix
almost-surely, such that

n γ̂′mĈ
−1
m γ̂m = n γ̂′m(Cm + Υn)−1γ̂m

= n γ̂′mC
−1
m γ̂m + n γ̂′mΥ∗nγ̂m .

Thanks to the arguments developed in the proof of Theorem 1, nγ̂′mγ̂m converges in distribu-
tion. So nγ̂′mΥ∗nγ̂m tends to zero in distribution, hence in probability. Then nγ̂′mĈ−1

m γ̂m and
nγ̂′mC

−1
m γ̂m have the same limit in distribution and the result is proved.

Acknowledgements

The research of Y. Boubacar Maïnassara was supported by a BQR (Bonus Qualité Recherche)
of the Université de Franche-Comté.

References

[1] Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance
matrix estimation. Econometrica 59, 3, 817–858.

[2] Berk, K. N. (1974). Consistent autoregressive spectral estimates. Ann. Statist. 2, 489–
502. Collection of articles dedicated to Jerzy Neyman on his 80th birthday.

[3] Boubacar Mainassara, Y. (2011). Multivariate portmanteau test for structural
VARMA models with uncorrelated but non-independent error terms. J. Statist. Plann.
Inference 141, 8, 2961–2975.

[4] Box, G. E. P. and Pierce, D. A. (1970). Distribution of residual autocorrelations in
autoregressive-integrated moving average time series models. J. Amer. Statist. Assoc. 65,
1509–1526.

[5] Brockwell, P. J. and Davis, R. A. (1991). Time series: theory and methods, Second
ed. Springer Series in Statistics. Springer-Verlag, New York.

[6] Davydov, J. A. (1968). The convergence of distributions which are generated by station-
ary random processes. Teor. Verojatnost. i Primenen. 13, 730–737.

[7] den Haan, W. J. and Levin, A. T. (1997). A practitioner’s guide to robust covariance
matrix estimation. In Robust inference. Handbook of Statist., Vol. 15. North-Holland,
Amsterdam, 299–342.

[8] Francq, C., Roy, R., and Zakoïan, J.-M. (2005). Diagnostic checking in ARMA
models with uncorrelated errors. J. Amer. Statist. Assoc. 100, 470, 532–544.

[9] Francq, C. and Zakoïan, J.-M. (1998). Estimating linear representations of nonlinear
processes. J. Statist. Plann. Inference 68, 1, 145–165.

[10] Francq, C. and Zakoïan, J.-M. (2000). Covariance matrix estimation for estimators
of mixing weak ARMA models. J. Statist. Plann. Inference 83, 2, 369–394.

[11] Francq, C. and Zakoïan, J.-M. (2005). Recent results for linear time series models
with non independent innovations. In Statistical modeling and analysis for complex data
problems. GERAD 25th Anniv. Ser., Vol. 1. Springer, New York, 241–265.

[12] Herrndorf, N. (1984). A functional central limit theorem for weakly dependent se-
quences of random variables. Ann. Probab. 12, 1, 141–153.

[13] Ljung, G. M. and Box, G. E. P. (1978). On a measure of lack of fit in time series
models. Biometrika 65, 2.



Y. Boubacar Maïnassara and B. Saussereau/Self-normalised tests for weak ARMA models 20

[14] Lobato, I. N. (2001). Testing that a dependent process is uncorrelated. J. Amer. Statist.
Assoc. 96, 455, 1066–1076.

[15] Newey, W. K. and West, K. D. (1987). A simple, positive semidefinite, heteroskedas-
ticity and autocorrelation consistent covariance matrix. Econometrica 55, 3, 703–708.

[16] Shao, X. (2012). Parametric inference in stationary time series models with dependent
errors. Scand. J. Stat. 39, 4, 772–783.

7. Tables

Table 1
Upper Critical Values of the Distribution of Um.

m\α 90 95 97.5 99 99.5
1 28.43 45.73 66.57 100.02 129.26
2 70.68 102.94 138.85 194.00 239.47
3 126.58 174.62 227.21 304.16 370.03
4 194.23 258.68 330.13 429.21 510.05
5 274.32 357.02 444.63 566.13 665.13
6 365.09 466.60 571.74 717.55 836.68
7 467.53 587.12 710.42 882.78 1018.78
8 581.20 721.75 869.05 1065.60 1223.84
9 703.28 865.77 1034.87 1260.32 1441.43
10 838.06 1023.06 1205.85 1462.63 1654.02
11 984.14 1190.11 1400.45 1674.11 1884.53
12 1137.44 1368.23 1596.98 1898.21 2126.25
13 1304.32 1551.80 1806.80 2139.87 2409.02
14 1477.48 1747.29 2017.97 2383.78 2654.10
15 1660.83 1965.79 2261.07 2638.53 2956.67
16 1855.49 2184.97 2498.27 2923.30 3229.06
17 2062.69 2413.09 2748.80 3205.62 3541.93
18 2283.94 2657.10 3028.39 3500.37 3856.29
19 2505.54 2907.39 3298.23 3814.26 4200.32
20 2734.79 3161.32 3572.52 4122.45 4541.10
21 2981.93 3432.20 3869.38 4461.20 4897.68
22 3232.17 3707.30 4176.87 4782.44 5243.65
23 3499.66 4011.67 4516.08 5157.49 5646.50
24 3772.57 4313.92 4835.70 5491.94 5990.39
36 7789.22 8710.34 9587.04 10701.47 11566.64
48 13126.85 14515.20 15754.06 17328.84 18466.33

The critical values for Um have also been tabulated by Lobato in [14]. We remark that the
critical values that we have computed are close to the one obtained by Lobato. Moreover, the
difference between these two tables do not affect the results of the testing procedure (see the
comments in Section 4).
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Table 2
Empirical size (in %) of the standard and modified versions of the BP test in the case of the strong
ARMA : model (32), with the parameter θ0 = (0, 0)′ and α1 = 0. The nominal asymptotic level of the

tests is α = 5%.

m = 2 m = 3 m = 4
Length n 100 300 1, 000 100 300 1, 000 100 300 1, 000
LBsn 4.7 5.6 3.7 4.2 6.1 3.2 4.3 6.3 4.0
BPLo

sn 4.4 5.5 3.7 3.9 6.1 3.2 3.8 6.3 3.9
BPsn 4.4 5.6 3.7 3.9 6.1 3.2 3.8 6.3 3.9
LBfrz 3.7 4.5 4.7 3.8 4.2 4.3 2.4 4.6 4.8
BPfrz 3.2 4.2 4.7 2.5 4.0 4.3 2.3 4.3 4.8
LBS 4.5 4.5 4.7 3.3 5.7 4.4 3.8 5.7 5.0
BPS 4.2 4.5 4.7 3.0 5.2 4.2 3.2 5.3 5.0

m = 6 m = 10 m = 18
Length n 100 300 1, 000 100 300 1, 000 100 300 1, 000
LBsn 4.4 6.0 5.3 3.5 5.4 6.1 2.4 4.0 6.5
BPLo

sn 3.5 5.6 5.3 2.3 5.4 6.1 1.3 3.0 6.0
BPsn 3.5 5.6 5.2 2.3 5.4 6.1 1.3 3.0 6.1
LBfrz 2.1 4.6 4.8 2.5 4.6 4.4 2.9 4.0 5.0
BPfrz 1.7 4.3 4.8 1.7 4.1 4.3 1.6 3.5 4.8
LBS 4.4 6.0 4.8 4.9 6.2 4.9 6.1 6.2 5.0
BPS 3.4 5.7 4.8 3.8 5.5 4.7 3.3 4.9 5.0
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Table 3
Empirical size (in %) of the standard and modified versions of the BP test in the case of the strong
ARMA(1, 1) : model (32), with the parameter θ0 = (0.95,−0.6)′ and α1 = 0. The nominal asymptotic

level of the tests is α = 5%.

m = 1 m = 2 m = 3
Length n 500 1, 000 500 1, 000 500 1, 000
LBsn 5.1 5.4 5.7 5.4 4.2 3.9
BPLo

sn 5.1 5.3 5.6 5.4 4.2 3.9
BPsn 5.0 5.2 5.7 5.4 4.2 3.9
LBfrz 5.6 4.9 5.5 4.9 3.5 3.3
BPfrz 5.3 4.8 5.5 4.9 3.3 3.3
LBS n.a. n.a. n.a. n.a. 15.3 13.8
BPS n.a. n.a. n.a. n.a. 15.0 13.5

m = 6 m = 12 m = 18
Length n 500 1, 000 500 1, 000 500 1, 000
LBsn 7.2 5.8 6.4 6.0 5.4 7.1
BPLo

sn 7.0 5.7 6.2 5.9 4.7 6.4
BPsn 7.0 5.7 6.2 5.8 4.7 6.5
LBfrz 2.6 1.8 2.2 1.5 3.3 1.8
BPfrz 2.2 1.7 1.9 1.3 2.4 1.7
LBS 8.3 7.6 7.2 5.9 7.6 7.7
BPS 7.8 7.5 6.9 5.6 6.4 6.5

Table 4
Empirical size (in %) of the standard and modified versions of the BP test in the case of the weak
ARMA(0, 0) : model (32), with the parameter θ0 = (0, 0)′ and α1 = 0.4. The nominal asymptotic

level of the tests is α = 5%.

m = 2 m = 3 m = 4
Length n 300 1, 000 300 1, 000 300 1, 000
LBsn 5.1 3.8 3.4 4.5 4.2 4.4
BPLo

sn 4.9 3.8 3.4 4.5 4.0 4.3
BPsn 5.1 3.9 3.4 4.5 4.0 4.4
LBfrz 3.2 4.0 3.0 3.9 3.1 4.0
BPfrz 3.1 4.0 2.5 3.9 3.1 4.0
LBS 19.1 19.4 18.3 20.1 16.1 18.9
BPS 18.8 19.4 17.5 20.0 15.6 18.7

m = 6 m = 12 m = 18
Length n 300 1, 000 300 1, 000 300 1, 000
LBsn 4.8 4.6 1.9 4.7 1.3 4.9
BPLo

sn 4.4 4.4 1.9 4.7 1.1 4.7
BPsn 4.3 4.4 1.9 4.7 1.1 4.7
LBfrz 2.7 3.8 2.6 2.1 1.9 3.4
BPfrz 2.3 3.8 2.3 2.0 1.4 3.2
LBS 14.3 16.2 11.3 13.7 11.7 13.1
BPS 13.8 16.0 10.8 13.4 9.7 12.3
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Table 5
Empirical size (in %) of the standard and modified versions of the BP test in the case of the weak

ARMA(1, 1) : model (32), with the parameter θ0 = (0.95,−0.6)′ and α1 = 0.4. The nominal
asymptotic level of the tests is α = 5%.

m = 1 m = 2 m = 3
Length n 1, 000 2, 000 1, 000 2, 000 1, 000 2, 000
LBsn 4.6 4.8 5.0 4.8 3.8 2.9
BPLo

sn 4.5 4.8 5.0 4.8 3.8 2.9
BPsn 4.5 4.7 5.0 4.8 3.8 2.9
LBfrz 4.3 4.8 3.9 4.7 2.1 2.7
BPfrz 4.3 4.8 3.8 4.7 2.1 2.7
LBS n.a. n.a. n.a. n.a. 25.4 26.8
BPS n.a. n.a. n.a. n.a. 25.4 26.7

m = 6 m = 12 m = 18
Length n 1, 000 2, 000 1, 000 2, 000 1, 000 2, 000
LBsn 6.2 5.7 5.7 4.1 3.6 4.7
BPLo

sn 6.2 5.6 5.3 3.9 3.5 4.4
BPsn 6.2 5.6 5.3 3.8 3.5 4.6
LBfrz 1.2 1.0 0.7 0.6 0.8 0.6
BPfrz 1.2 1.0 0.7 0.6 0.6 0.6
LBS 13.4 15.2 9.6 10.7 7.7 9.6
BPS 13.3 15.0 9.0 10.6 7.2 8.9

Table 6
Empirical power (in %) of the standard and modified versions of the BP test in the case of the weak

ARMA(2, 1) model (33) and α1 = 0.

m = 1 m = 2 m = 3
Length n 500 1, 000 500 1, 000 500 1, 000
LBsn 77.4 95.1 65.8 88.4 46.2 73.9
BPLo

sn 77.2 95.1 65.8 88.1 46.1 73.8
BPsn 77.0 95.0 65.8 88.5 46.2 73.8
LBfrz 95.3 99.6 92.4 99.0 66.5 76.7
BPfrz 95.3 99.6 92.2 99.0 65.9 76.4
LBS n.a. n.a. n.a. n.a. 95.3 99.9
BPS n.a. n.a. n.a. n.a. 95.3 99.9

m = 4 m = 6 m = 10
Length n 500 1, 000 500 1, 000 500 1, 000
LBsn 53.9 82.0 48.5 77.4 40.2 73.5
BPLo

sn 53.4 81.9 48.3 77.3 39.3 73.4
BPsn 53.5 81.8 48.3 77.3 38.9 73.5
LBfrz 72.2 88.1 68.9 91.4 57.4 87.5
BPfrz 71.6 88.0 68.0 91.3 55.8 87.1
LBS 90.3 99.7 88.3 99.4 82.3 98.6
BPS 90.1 99.7 87.6 99.4 81.6 98.6
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Table 7
Empirical power (in %) of the standard and modified versions of the BP test in the case of the weak

ARMA(2, 1) model (33) and α1 = 0.4.

m = 1 m = 2 m = 3
Length n 500 1, 000 500 1, 000 500 1, 000
LBsn 60.7 84.6 49.1 72.9 30.3 56.1
BPLo

sn 60.6 84.6 48.7 72.7 29.9 56.1
BPsn 60.5 84.4 49.1 72.9 29.9 56.1
LBfrz 81.7 97.6 75.1 95.1 29.6 59.4
BPfrz 81.8 97.5 74.8 94.9 29.4 59.3
LBS n.a. n.a. n.a. n.a. 91.1 99.5
BPS n.a. n.a. n.a. n.a. 91.0 99.5

m = 4 m = 6 m = 10
Length n 500 1, 000 500 1, 000 500 1, 000
LBsn 35.5 63.7 27.6 54.6 23.2 50.0
BPLo

sn 35.2 63.7 27.8 54.5 22.8 49.3
BPsn 35.4 63.7 27.5 54.5 22.4 49.1
LBfrz 43.2 77.5 45.9 81.9 36.0 75.2
BPfrz 42.9 77.4 45.1 81.9 35.3 74.8
LBS 84.7 98.5 81.8 97.5 75.0 95.8
BPS 84.2 98.4 81.5 97.5 74.2 95.5

Table 8
Standard and modified versions of portmanteau tests to check the null hypothesis that the CAC40

returns is a white noise.

Lag m 2 3 4 5 10 18 24
ρ̂(m) -0.02829 -0.05308 0.04064 -0.05296 0.00860 -0.02182 0.00466
LBsn 36.8397 65.3110 141.899 183.391 435.224 669.439 880.159
BPsn 36.8010 65.2472 141.727 183.144 434.646 668.402 878.556
LBfrz 4.89097 19.4172 27.9413 42.4158 52.7845 61.2431 67.2210
BPfrz 4.88733 19.3994 27.9137 42.3685 52.7171 61.1467 67.0991
plb
sn 0.24154 0.27548 0.18218 0.22384 0.43726 0.90622 0.98502

pbp
sn 0.24178 0.27574 0.18250 0.22440 0.43814 0.90674 0.98519

plb
frz 0.29699 0.03480 0.03837 0.00911 0.02085 0.17452 0.24341

pbp
frz 0.29725 0.03491 0.03810 0.00916 0.02100 0.17544 0.24482

plb
S 0.08668 0.00022 0.00000 0.00000 0.00000 0.00000 0.00000

pbp
S 0.08684 0.00023 0.00000 0.00000 0.00000 0.00000 0.00000
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Table 9
Standard and modified versions of portmanteau tests to check the null hypothesis that the CAC40

squared returns follow an ARMA(1, 1) model.

Lag m 1 2 3 4 5 6 7
ρ̂(m) -0.04724 0.010467 0.01275 -0.00252 0.08579 -0.03532 -0.02772
LBsn 8.96411 17.2907 21.0192 20.9689 21.0344 21.8014 25.0933
BPsn 8.95890 17.2786 21.0026 20.9526 21.0172 21.7755 25.0477
LBfrz 11.5095 12.0746 12.9140 12.9468 50.9362 57.3777 61.3462
BPfrz 11.5028 12.0674 12.9061 12.9388 50.8767 57.3081 61.2697
plb
sn 0.30050 0.45977 0.66164 0.84375 0.93811 0.97700 0.98987

pbp
sn 0.30061 0.45998 0.66183 0.84391 0.93822 0.97709 0.98991

plb
frz 0.11777 0.18293 0.34192 0.48658 0.29325 0.36110 0.38848

pbp
frz 0.11789 0.18310 0.34218 0.48687 0.29368 0.36159 0.38899

plb
S n.a. n.a. 0.00033 0.00154 0.00000 0.00000 0.00000

pbp
S n.a. n.a. 0.00033 0.00155 0.00000 0.00000 0.00000

Lag m 8 9 10 12 18 20 24
ρ̂(m) -0.04099 0.02048 0.04568 0.03584 0.03929 -0.04526 -0.04526
LBsn 27.7828 27.5084 67.8011 93.7494 167.937 155.600 364.860
BPsn 27.7576 27.4791 67.5936 93.1298 169.383 154.868 363.935
LBfrz 70.0230 72.1898 82.9700 89.6424 117.933 128.546 143.244
BPfrz 69.9297 72.0919 82.8470 89.5013 117.697 128.265 142.890
plb
sn 0.99599 0.99896 0.99275 0.99673 0.99988 0.99999 0.99995

pbp
sn 0.99600 0.99897 0.99278 0.99679 0.99987 0.99999 0.99995

plb
frz 0.33766 0.40190 0.33819 0.39101 0.48717 0.45510 0.45367

pbp
frz 0.33821 0.40250 0.33892 0.39191 0.48829 0.45635 0.45503

plb
S 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

pbp 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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